Matches in SemOpenAlex for { <https://semopenalex.org/work/W201106317> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W201106317 abstract "The nature and structure of stock-market price dynamics is an area of ongoing and rigourous scientific debate. For almost three decades, most emphasis has been given on upholding the concepts of Market Efficiency and rational investment behaviour. Such an approach has favoured the development of numerous linear and nonlinear models mainly of stochastic foundations. Advances in mathematics have shown that nonlinear deterministic processes i.e. can produce sequences that appear random to linear statistical techniques. Till recently, investment finance has been a science based on linearity and stochasticity. Hence it is important that studies of Market Efficiency include investigations of chaotic determinism and power laws. As far as chaos is concerned, there are rather mixed or inconclusive research results, prone with controversy. This inconclusiveness is attributed to two things: the nature of stock market time series, which are highly volatile and contaminated with a substantial amount of noise of largely unknown structure, and the lack of appropriate robust statistical testing procedures. In order to overcome such difficulties, within this thesis it is shown empirically and for the first time how one can combine novel techniques from recent chaotic and signal analysis literature, under a univariate time series analysis framework. Three basic methodologies are investigated: Recurrence analysis, Surrogate Data and Wavelet transforms. Recurrence Analysis is used to reveal qualitative and quantitative evidence of nonlinearity and nonstochasticity for a number of stock markets. It is then demonstrated how Surrogate Data, under a statistical hypothesis testing framework, can be simulated to provide similar evidence. Finally, it is shown how wavelet transforms can be applied in order to reveal various salient features of the market data and provide a platform for nonparametric regression and denoising. The results indicate that without the invocation of any parametric model-based assumptions, one can easily deduce that there is more to linearity and stochastic randomness in the data. Moreover, substantial evidence of recurrent patterns and aperiodicities is discovered which can be attributed to chaotic dynamics. These results are therefore very consistent with existing research indicating some types of nonlinear dependence in financial data. Concluding, the value of this thesis lies in its contribution to the overall evidence on Market Efficiency and chaotic determinism in financial markets. The main implication here is that the theory of equilibrium pricing in financial markets may need reconsideration in order to accommodate for the structures revealed." @default.
- W201106317 created "2016-06-24" @default.
- W201106317 creator A5079782171 @default.
- W201106317 date "2002-01-01" @default.
- W201106317 modified "2023-09-27" @default.
- W201106317 title "Essays on the nonlinear and nonstochastic nature of stock market data" @default.
- W201106317 hasPublicationYear "2002" @default.
- W201106317 type Work @default.
- W201106317 sameAs 201106317 @default.
- W201106317 citedByCount "0" @default.
- W201106317 crossrefType "dissertation" @default.
- W201106317 hasAuthorship W201106317A5079782171 @default.
- W201106317 hasConcept C105795698 @default.
- W201106317 hasConcept C106159729 @default.
- W201106317 hasConcept C111472728 @default.
- W201106317 hasConcept C121332964 @default.
- W201106317 hasConcept C138885662 @default.
- W201106317 hasConcept C142806159 @default.
- W201106317 hasConcept C149782125 @default.
- W201106317 hasConcept C151730666 @default.
- W201106317 hasConcept C154945302 @default.
- W201106317 hasConcept C158622935 @default.
- W201106317 hasConcept C161584116 @default.
- W201106317 hasConcept C162324750 @default.
- W201106317 hasConcept C192183473 @default.
- W201106317 hasConcept C199163554 @default.
- W201106317 hasConcept C2777052490 @default.
- W201106317 hasConcept C2780299701 @default.
- W201106317 hasConcept C2780762169 @default.
- W201106317 hasConcept C29368100 @default.
- W201106317 hasConcept C33923547 @default.
- W201106317 hasConcept C41008148 @default.
- W201106317 hasConcept C62520636 @default.
- W201106317 hasConcept C86803240 @default.
- W201106317 hasConceptScore W201106317C105795698 @default.
- W201106317 hasConceptScore W201106317C106159729 @default.
- W201106317 hasConceptScore W201106317C111472728 @default.
- W201106317 hasConceptScore W201106317C121332964 @default.
- W201106317 hasConceptScore W201106317C138885662 @default.
- W201106317 hasConceptScore W201106317C142806159 @default.
- W201106317 hasConceptScore W201106317C149782125 @default.
- W201106317 hasConceptScore W201106317C151730666 @default.
- W201106317 hasConceptScore W201106317C154945302 @default.
- W201106317 hasConceptScore W201106317C158622935 @default.
- W201106317 hasConceptScore W201106317C161584116 @default.
- W201106317 hasConceptScore W201106317C162324750 @default.
- W201106317 hasConceptScore W201106317C192183473 @default.
- W201106317 hasConceptScore W201106317C199163554 @default.
- W201106317 hasConceptScore W201106317C2777052490 @default.
- W201106317 hasConceptScore W201106317C2780299701 @default.
- W201106317 hasConceptScore W201106317C2780762169 @default.
- W201106317 hasConceptScore W201106317C29368100 @default.
- W201106317 hasConceptScore W201106317C33923547 @default.
- W201106317 hasConceptScore W201106317C41008148 @default.
- W201106317 hasConceptScore W201106317C62520636 @default.
- W201106317 hasConceptScore W201106317C86803240 @default.
- W201106317 hasLocation W2011063171 @default.
- W201106317 hasOpenAccess W201106317 @default.
- W201106317 hasPrimaryLocation W2011063171 @default.
- W201106317 hasRelatedWork W1995614904 @default.
- W201106317 hasRelatedWork W2045012107 @default.
- W201106317 hasRelatedWork W2088341700 @default.
- W201106317 hasRelatedWork W2161042876 @default.
- W201106317 hasRelatedWork W2196189337 @default.
- W201106317 hasRelatedWork W2600609346 @default.
- W201106317 hasRelatedWork W2625358915 @default.
- W201106317 hasRelatedWork W2909951134 @default.
- W201106317 hasRelatedWork W2992355030 @default.
- W201106317 hasRelatedWork W3038970853 @default.
- W201106317 hasRelatedWork W3122520186 @default.
- W201106317 hasRelatedWork W3122984897 @default.
- W201106317 hasRelatedWork W3124144027 @default.
- W201106317 hasRelatedWork W3124320353 @default.
- W201106317 hasRelatedWork W3125088808 @default.
- W201106317 hasRelatedWork W3205559049 @default.
- W201106317 hasRelatedWork W81107170 @default.
- W201106317 hasRelatedWork W932750973 @default.
- W201106317 hasRelatedWork W2239707338 @default.
- W201106317 hasRelatedWork W42692051 @default.
- W201106317 isParatext "false" @default.
- W201106317 isRetracted "false" @default.
- W201106317 magId "201106317" @default.
- W201106317 workType "dissertation" @default.