Matches in SemOpenAlex for { <https://semopenalex.org/work/W2011082218> ?p ?o ?g. }
Showing items 1 to 61 of
61
with 100 items per page.
- W2011082218 abstract "For a fixed Feynman graph one can consider Feynman integrals with all possible powers of propagators and try to reduce them, by linear relations, to a finite subset of integrals, the so-called master integrals. Up to now, there are numerous examples of reduction procedures resulting in a finite number of master integrals for various families of Feynman integrals. However, up to now it was just an empirical fact that the reduction procedure results in a finite number of irreducible integrals. It this paper we prove that the number of master integrals is always finite." @default.
- W2011082218 created "2016-06-24" @default.
- W2011082218 creator A5029066885 @default.
- W2011082218 creator A5031518632 @default.
- W2011082218 date "2010-04-23" @default.
- W2011082218 modified "2023-10-18" @default.
- W2011082218 title "The number of master integrals is finite" @default.
- W2011082218 cites W3104153691 @default.
- W2011082218 doi "https://doi.org/10.48550/arxiv.1004.4199" @default.
- W2011082218 hasPublicationYear "2010" @default.
- W2011082218 type Work @default.
- W2011082218 sameAs 2011082218 @default.
- W2011082218 citedByCount "4" @default.
- W2011082218 countsByYear W20110822182015 @default.
- W2011082218 countsByYear W20110822182017 @default.
- W2011082218 countsByYear W20110822182018 @default.
- W2011082218 crossrefType "posted-content" @default.
- W2011082218 hasAuthorship W2011082218A5029066885 @default.
- W2011082218 hasAuthorship W2011082218A5031518632 @default.
- W2011082218 hasBestOaLocation W20110822181 @default.
- W2011082218 hasConcept C104416048 @default.
- W2011082218 hasConcept C111335779 @default.
- W2011082218 hasConcept C118615104 @default.
- W2011082218 hasConcept C132525143 @default.
- W2011082218 hasConcept C136119220 @default.
- W2011082218 hasConcept C202444582 @default.
- W2011082218 hasConcept C2524010 @default.
- W2011082218 hasConcept C2992379347 @default.
- W2011082218 hasConcept C33923547 @default.
- W2011082218 hasConcept C37914503 @default.
- W2011082218 hasConcept C65574998 @default.
- W2011082218 hasConceptScore W2011082218C104416048 @default.
- W2011082218 hasConceptScore W2011082218C111335779 @default.
- W2011082218 hasConceptScore W2011082218C118615104 @default.
- W2011082218 hasConceptScore W2011082218C132525143 @default.
- W2011082218 hasConceptScore W2011082218C136119220 @default.
- W2011082218 hasConceptScore W2011082218C202444582 @default.
- W2011082218 hasConceptScore W2011082218C2524010 @default.
- W2011082218 hasConceptScore W2011082218C2992379347 @default.
- W2011082218 hasConceptScore W2011082218C33923547 @default.
- W2011082218 hasConceptScore W2011082218C37914503 @default.
- W2011082218 hasConceptScore W2011082218C65574998 @default.
- W2011082218 hasLocation W20110822181 @default.
- W2011082218 hasLocation W20110822182 @default.
- W2011082218 hasLocation W20110822183 @default.
- W2011082218 hasOpenAccess W2011082218 @default.
- W2011082218 hasPrimaryLocation W20110822181 @default.
- W2011082218 hasRelatedWork W129109635 @default.
- W2011082218 hasRelatedWork W1496095007 @default.
- W2011082218 hasRelatedWork W1854628891 @default.
- W2011082218 hasRelatedWork W2016997839 @default.
- W2011082218 hasRelatedWork W2141225954 @default.
- W2011082218 hasRelatedWork W2264472900 @default.
- W2011082218 hasRelatedWork W2950266622 @default.
- W2011082218 hasRelatedWork W338335766 @default.
- W2011082218 hasRelatedWork W4211088623 @default.
- W2011082218 hasRelatedWork W4297614059 @default.
- W2011082218 isParatext "false" @default.
- W2011082218 isRetracted "false" @default.
- W2011082218 magId "2011082218" @default.
- W2011082218 workType "article" @default.