Matches in SemOpenAlex for { <https://semopenalex.org/work/W2011102148> ?p ?o ?g. }
- W2011102148 endingPage "2463" @default.
- W2011102148 startingPage "2454" @default.
- W2011102148 abstract "Integrating carbon nanotubes (CNTs) with biological systems to form hybrid functional assemblies is an innovative research area with great promise for medical, nanotechnology, and materials science applications. The specifics of molecular recognition and catalytic activity of proteins combined with the mechanical and electronic properties of CNTs provides opportunities for physicists, chemists, biologists, and materials scientists to understand and develop new nanomachines, sensors, or any of a number of other molecular assemblies. Researchers know relatively little about the structure, function, and spatial orientation of proteins noncovalently adsorbed on CNTs, yet because the interaction of CNTs with proteins depends strongly on the tridimensional structure of the proteins, many of these questions can be answered in simple terms.In this Account, we describe recent research investigating the properties of CNT/protein hybrids. Proteins act to solvate CNTs and may sort them according to diameter or chirality. In turn, CNTs can support and immobilize enzymes, creating functional materials. Additional applications include proteins that assemble ordered hierarchical objects containing CNTs, and CNTs that act as protein carriers for vaccines, for example. Protein/CNT hybrids can form bioscaffolds and can serve as therapeutic and imaging materials.Proteins can detect CNTs or coat them to make them biocompatible. One of the more challenging applications for protein/CNT hybrids is to make CNT substrates for cell growth and neural interfacing applications. The challenge arises from the structures’ interactions with living cells, which poses questions surrounding the (nano)toxicology of CNTs and whether and how CNTs can detect biological processes or sense them as they occur.The surface chemistry of CNTs and proteins, including interactions such as π–π stacking interactions, hydrophobic interactions, surfactant-like interactions, and charge−π interactions, governs the wealth of structures, processes, and functions that appear when such different types of molecules interact. Each residue stars in one of two main roles, and understanding which residues are best suited for which type of interaction can lead to the design of new hybrids. Nonlocally, the peptide or protein primary, secondary, and tertiary structures govern the binding of proteins by CNTs.The conjugation of proteins with CNTs presents some serious difficulties both experimentally and culturally (such as bridging the “jargon barrier” across disciplines). The intersection of these fields lies between communities characterized by distinctly different approaches and methodologies. However, the examples of this Account illustrate that when this barrier is overcome, the exploitation of hybrid CNT–protein systems offers great potential." @default.
- W2011102148 created "2016-06-24" @default.
- W2011102148 creator A5017487322 @default.
- W2011102148 creator A5087288201 @default.
- W2011102148 date "2013-07-05" @default.
- W2011102148 modified "2023-10-03" @default.
- W2011102148 title "The Devil and Holy Water: Protein and Carbon Nanotube Hybrids" @default.
- W2011102148 cites W1938399794 @default.
- W2011102148 cites W1972053765 @default.
- W2011102148 cites W1973751911 @default.
- W2011102148 cites W1974327005 @default.
- W2011102148 cites W1975329691 @default.
- W2011102148 cites W1980695842 @default.
- W2011102148 cites W1981838448 @default.
- W2011102148 cites W1982894559 @default.
- W2011102148 cites W1982904490 @default.
- W2011102148 cites W1983188757 @default.
- W2011102148 cites W1983793430 @default.
- W2011102148 cites W1985606233 @default.
- W2011102148 cites W1989414751 @default.
- W2011102148 cites W1991265458 @default.
- W2011102148 cites W1992855179 @default.
- W2011102148 cites W1992861857 @default.
- W2011102148 cites W1994395066 @default.
- W2011102148 cites W2011416230 @default.
- W2011102148 cites W2017789483 @default.
- W2011102148 cites W2019637120 @default.
- W2011102148 cites W2020060039 @default.
- W2011102148 cites W2021048158 @default.
- W2011102148 cites W2021955096 @default.
- W2011102148 cites W2023878591 @default.
- W2011102148 cites W2026512216 @default.
- W2011102148 cites W2027691472 @default.
- W2011102148 cites W2030664038 @default.
- W2011102148 cites W2036144431 @default.
- W2011102148 cites W2037274004 @default.
- W2011102148 cites W2039855332 @default.
- W2011102148 cites W2040786662 @default.
- W2011102148 cites W2043594835 @default.
- W2011102148 cites W2044219362 @default.
- W2011102148 cites W2049202154 @default.
- W2011102148 cites W2050362994 @default.
- W2011102148 cites W2054778976 @default.
- W2011102148 cites W2055539256 @default.
- W2011102148 cites W2070579594 @default.
- W2011102148 cites W2073738547 @default.
- W2011102148 cites W2077535362 @default.
- W2011102148 cites W2083523889 @default.
- W2011102148 cites W2084919823 @default.
- W2011102148 cites W2086222788 @default.
- W2011102148 cites W2086250480 @default.
- W2011102148 cites W2086621451 @default.
- W2011102148 cites W2088036844 @default.
- W2011102148 cites W2088277794 @default.
- W2011102148 cites W2090304430 @default.
- W2011102148 cites W2092003931 @default.
- W2011102148 cites W2100529441 @default.
- W2011102148 cites W2103579353 @default.
- W2011102148 cites W2110769656 @default.
- W2011102148 cites W2115286737 @default.
- W2011102148 cites W2126504715 @default.
- W2011102148 cites W2127845160 @default.
- W2011102148 cites W2133527297 @default.
- W2011102148 cites W2135331413 @default.
- W2011102148 cites W2140781604 @default.
- W2011102148 cites W2142129168 @default.
- W2011102148 cites W2143391484 @default.
- W2011102148 cites W2147157132 @default.
- W2011102148 cites W2155147384 @default.
- W2011102148 cites W2156664531 @default.
- W2011102148 cites W2159047621 @default.
- W2011102148 cites W2161889325 @default.
- W2011102148 cites W2163288829 @default.
- W2011102148 cites W2164370375 @default.
- W2011102148 cites W2317976997 @default.
- W2011102148 cites W2330945034 @default.
- W2011102148 cites W2331863895 @default.
- W2011102148 cites W4236893288 @default.
- W2011102148 doi "https://doi.org/10.1021/ar300347d" @default.
- W2011102148 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/23826731" @default.
- W2011102148 hasPublicationYear "2013" @default.
- W2011102148 type Work @default.
- W2011102148 sameAs 2011102148 @default.
- W2011102148 citedByCount "136" @default.
- W2011102148 countsByYear W20111021482014 @default.
- W2011102148 countsByYear W20111021482015 @default.
- W2011102148 countsByYear W20111021482016 @default.
- W2011102148 countsByYear W20111021482017 @default.
- W2011102148 countsByYear W20111021482018 @default.
- W2011102148 countsByYear W20111021482019 @default.
- W2011102148 countsByYear W20111021482020 @default.
- W2011102148 countsByYear W20111021482021 @default.
- W2011102148 countsByYear W20111021482022 @default.
- W2011102148 countsByYear W20111021482023 @default.
- W2011102148 crossrefType "journal-article" @default.
- W2011102148 hasAuthorship W2011102148A5017487322 @default.
- W2011102148 hasAuthorship W2011102148A5087288201 @default.
- W2011102148 hasConcept C171250308 @default.