Matches in SemOpenAlex for { <https://semopenalex.org/work/W2011104027> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W2011104027 endingPage "93" @default.
- W2011104027 startingPage "81" @default.
- W2011104027 abstract "Machine learning for text classification is the underpinning of document cataloging, news filtering, document steering and exemplification. In text mining realm, effective feature selection is significant to make the learning task more accurate and competent. One of the traditional lazy text classifier k-Nearest Neighborhood (kNN) has a major pitfall in calculating the similarity between all the objects in training and testing sets, there by leads to exaggeration of both computational complexity of the algorithm and massive consumption of main memory. To diminish these shortcomings in viewpoint of a data-mining practitioner an amalgamative technique is proposed in this paper using a novel restructured version of kNN called AugmentedkNN(AkNN) and k-Medoids(kMdd) clustering.The proposed work comprises preprocesses on the initial training set by imposing attribute feature selection for reduction of high dimensionality, also it detects and excludes the high-fliers samples in the initial training set and restructures a constrictedtraining set. The kMdd clustering algorithm generates the cluster centers (as interior objects) for each category and restructures the constricted training set with centroids. This technique is amalgamated with AkNNclassifier that was prearranged with text mining similarity measures. Eventually, significantweights and ranks were assigned to each object in the new training set based upon their accessory towards the object in testing set. Experiments conducted on Reuters-21578 a UCI benchmark text mining data set, and comparisons with traditional kNNclassifier designates the referredmethod yieldspreeminentrecitalin both clustering and classification." @default.
- W2011104027 created "2016-06-24" @default.
- W2011104027 creator A5002158696 @default.
- W2011104027 creator A5031134921 @default.
- W2011104027 creator A5033617255 @default.
- W2011104027 creator A5084428370 @default.
- W2011104027 date "2013-11-30" @default.
- W2011104027 modified "2023-09-30" @default.
- W2011104027 title "Novel Text Categorization by Amalgamation of Augmented K-Nearest Neighbourhoodclassification and K-Medoids Clustering" @default.
- W2011104027 cites W1509381869 @default.
- W2011104027 cites W1647671624 @default.
- W2011104027 cites W1999535027 @default.
- W2011104027 cites W2016004628 @default.
- W2011104027 cites W2042200090 @default.
- W2011104027 cites W2062957446 @default.
- W2011104027 cites W2074294631 @default.
- W2011104027 cites W2079737479 @default.
- W2011104027 cites W2089497633 @default.
- W2011104027 cites W2094040550 @default.
- W2011104027 cites W2122111042 @default.
- W2011104027 cites W2124868070 @default.
- W2011104027 cites W2130695501 @default.
- W2011104027 cites W2139676742 @default.
- W2011104027 cites W2146724934 @default.
- W2011104027 cites W2147152072 @default.
- W2011104027 cites W2168873314 @default.
- W2011104027 cites W2341171179 @default.
- W2011104027 cites W2735565355 @default.
- W2011104027 cites W3105578466 @default.
- W2011104027 cites W8870360 @default.
- W2011104027 doi "https://doi.org/10.5121/ijcsity.2013.1406" @default.
- W2011104027 hasPublicationYear "2013" @default.
- W2011104027 type Work @default.
- W2011104027 sameAs 2011104027 @default.
- W2011104027 citedByCount "0" @default.
- W2011104027 crossrefType "journal-article" @default.
- W2011104027 hasAuthorship W2011104027A5002158696 @default.
- W2011104027 hasAuthorship W2011104027A5031134921 @default.
- W2011104027 hasAuthorship W2011104027A5033617255 @default.
- W2011104027 hasAuthorship W2011104027A5084428370 @default.
- W2011104027 hasBestOaLocation W20111040271 @default.
- W2011104027 hasConcept C119857082 @default.
- W2011104027 hasConcept C124101348 @default.
- W2011104027 hasConcept C146599234 @default.
- W2011104027 hasConcept C148483581 @default.
- W2011104027 hasConcept C153180895 @default.
- W2011104027 hasConcept C154945302 @default.
- W2011104027 hasConcept C177264268 @default.
- W2011104027 hasConcept C199360897 @default.
- W2011104027 hasConcept C41008148 @default.
- W2011104027 hasConcept C73555534 @default.
- W2011104027 hasConceptScore W2011104027C119857082 @default.
- W2011104027 hasConceptScore W2011104027C124101348 @default.
- W2011104027 hasConceptScore W2011104027C146599234 @default.
- W2011104027 hasConceptScore W2011104027C148483581 @default.
- W2011104027 hasConceptScore W2011104027C153180895 @default.
- W2011104027 hasConceptScore W2011104027C154945302 @default.
- W2011104027 hasConceptScore W2011104027C177264268 @default.
- W2011104027 hasConceptScore W2011104027C199360897 @default.
- W2011104027 hasConceptScore W2011104027C41008148 @default.
- W2011104027 hasConceptScore W2011104027C73555534 @default.
- W2011104027 hasIssue "4" @default.
- W2011104027 hasLocation W20111040271 @default.
- W2011104027 hasLocation W20111040272 @default.
- W2011104027 hasLocation W20111040273 @default.
- W2011104027 hasOpenAccess W2011104027 @default.
- W2011104027 hasPrimaryLocation W20111040271 @default.
- W2011104027 hasRelatedWork W2045437074 @default.
- W2011104027 hasRelatedWork W2076447551 @default.
- W2011104027 hasRelatedWork W2953024232 @default.
- W2011104027 hasRelatedWork W3174196512 @default.
- W2011104027 hasRelatedWork W3208326136 @default.
- W2011104027 hasRelatedWork W3210877509 @default.
- W2011104027 hasRelatedWork W4200482842 @default.
- W2011104027 hasRelatedWork W4212852473 @default.
- W2011104027 hasRelatedWork W4225360065 @default.
- W2011104027 hasRelatedWork W4307883119 @default.
- W2011104027 hasVolume "1" @default.
- W2011104027 isParatext "false" @default.
- W2011104027 isRetracted "false" @default.
- W2011104027 magId "2011104027" @default.
- W2011104027 workType "article" @default.