Matches in SemOpenAlex for { <https://semopenalex.org/work/W2011104561> ?p ?o ?g. }
- W2011104561 endingPage "137" @default.
- W2011104561 startingPage "122" @default.
- W2011104561 abstract "The Acoculco caldera has been recognized by the Mexican Federal Electricity Company (CFE) as a Hot Dry Rock Geothermal System (HDR) and could be a potential candidate for developing an Enhanced Geothermal System (EGS). Apart from hydrothermally altered rocks, geothermal manifestations within the Acoculco caldera are scarce. Close to ambient temperature bubbling springs and soil degassing are reported inside the caldera while a few springs discharge warm water on the periphery of the caldera. In this study, we infer the origin of fluids and we characterize for the first time the soil degassing dynamic. Chemical and isotopic (δ18O–δD) analyses of spring waters indicate a meteoric origin and the dissolution of CO2 and H2S gases, while gas chemical and isotopic compositions (N2/He, 3He/4He, 13C, 15N) reveal a magmatic contribution with both MORB- and arc-type signatures which could be explained by an extension regime created by local and regional fault systems. Gas geothermometry results are in agreement with temperature measured during well drilling (260 °C–300 °C). Absence of well-developed water reservoir at depth impedes re-equilibration of gases upon surface. A multi-gas flux survey including CO2, CH4 and H2S measurements was performed within the caldera. Using the graphical statistical analysis (GSA) approach, CO2 flux measurements were classified in two populations. Population A, representing 95% of measured fluxes is characterized by low values (mean: 18 g m− 2 day− 1) while the remaining 5% fluxes belonging to Population B are much higher (mean: 5543 g m− 2 day− 1). This low degassing rate probably reflects the low permeability of the system, a consequence of the intense hydrothermal alteration observed in the upper 800 m of volcanic rocks. An attempt to interpret the origin and transport mechanism of these fluxes is proposed by means of flux ratios as well as by numerical modeling. Measurements with CO2/CH4 and CO2/H2S flux ratios similar to mass ratios of sampled gases were considered as reflecting advective transport. A numerical model of CO2 migration in the subsoil system under fully water and gas saturated conditions was performed using the TOUGH2 code in order to reproduce semi-quantitatively field measurements. The main results show that high flux values produced by advective geothermal degassing can be very localized and that low and heterogeneous permeability conditions can induce low advective CO2 flux values. Therefore, in this case the populations discriminated by the GSA method should not be interpreted in terms of origin and/or transport mechanism but rather in terms of permeability conditions." @default.
- W2011104561 created "2016-06-24" @default.
- W2011104561 creator A5027584723 @default.
- W2011104561 creator A5048809468 @default.
- W2011104561 creator A5051832281 @default.
- W2011104561 creator A5065521335 @default.
- W2011104561 creator A5078423870 @default.
- W2011104561 creator A5082747831 @default.
- W2011104561 date "2014-09-01" @default.
- W2011104561 modified "2023-10-09" @default.
- W2011104561 title "Fluid geochemistry and soil gas fluxes (CO2–CH4–H2S) at a promissory Hot Dry Rock Geothermal System: The Acoculco caldera, Mexico" @default.
- W2011104561 cites W1600893777 @default.
- W2011104561 cites W1966859170 @default.
- W2011104561 cites W1968175912 @default.
- W2011104561 cites W1973794271 @default.
- W2011104561 cites W1974924765 @default.
- W2011104561 cites W1976134202 @default.
- W2011104561 cites W1976137792 @default.
- W2011104561 cites W1977701399 @default.
- W2011104561 cites W1979235072 @default.
- W2011104561 cites W1979298447 @default.
- W2011104561 cites W1979738477 @default.
- W2011104561 cites W1983054846 @default.
- W2011104561 cites W1986411013 @default.
- W2011104561 cites W1988569355 @default.
- W2011104561 cites W1988696696 @default.
- W2011104561 cites W1992057094 @default.
- W2011104561 cites W1992101673 @default.
- W2011104561 cites W2000071429 @default.
- W2011104561 cites W2002077405 @default.
- W2011104561 cites W2005123230 @default.
- W2011104561 cites W2008680648 @default.
- W2011104561 cites W2009748137 @default.
- W2011104561 cites W2011896880 @default.
- W2011104561 cites W2015695205 @default.
- W2011104561 cites W2016252579 @default.
- W2011104561 cites W2018617161 @default.
- W2011104561 cites W2019491576 @default.
- W2011104561 cites W2024586242 @default.
- W2011104561 cites W2025173625 @default.
- W2011104561 cites W2031449780 @default.
- W2011104561 cites W2031484719 @default.
- W2011104561 cites W2035272526 @default.
- W2011104561 cites W2038731441 @default.
- W2011104561 cites W2041532412 @default.
- W2011104561 cites W2045099465 @default.
- W2011104561 cites W2046036033 @default.
- W2011104561 cites W2051757039 @default.
- W2011104561 cites W2053699316 @default.
- W2011104561 cites W2058291382 @default.
- W2011104561 cites W2060211573 @default.
- W2011104561 cites W2061934685 @default.
- W2011104561 cites W2065186430 @default.
- W2011104561 cites W2069659025 @default.
- W2011104561 cites W2070270217 @default.
- W2011104561 cites W2072191315 @default.
- W2011104561 cites W2074782973 @default.
- W2011104561 cites W2076526690 @default.
- W2011104561 cites W2078213870 @default.
- W2011104561 cites W2083943059 @default.
- W2011104561 cites W2085311334 @default.
- W2011104561 cites W2086940060 @default.
- W2011104561 cites W2091798532 @default.
- W2011104561 cites W2113749291 @default.
- W2011104561 cites W2114336130 @default.
- W2011104561 cites W2149168164 @default.
- W2011104561 cites W2157671567 @default.
- W2011104561 cites W2164574438 @default.
- W2011104561 doi "https://doi.org/10.1016/j.jvolgeores.2014.07.019" @default.
- W2011104561 hasPublicationYear "2014" @default.
- W2011104561 type Work @default.
- W2011104561 sameAs 2011104561 @default.
- W2011104561 citedByCount "27" @default.
- W2011104561 countsByYear W20111045612015 @default.
- W2011104561 countsByYear W20111045612016 @default.
- W2011104561 countsByYear W20111045612017 @default.
- W2011104561 countsByYear W20111045612018 @default.
- W2011104561 countsByYear W20111045612019 @default.
- W2011104561 countsByYear W20111045612020 @default.
- W2011104561 countsByYear W20111045612021 @default.
- W2011104561 countsByYear W20111045612022 @default.
- W2011104561 countsByYear W20111045612023 @default.
- W2011104561 crossrefType "journal-article" @default.
- W2011104561 hasAuthorship W2011104561A5027584723 @default.
- W2011104561 hasAuthorship W2011104561A5048809468 @default.
- W2011104561 hasAuthorship W2011104561A5051832281 @default.
- W2011104561 hasAuthorship W2011104561A5065521335 @default.
- W2011104561 hasAuthorship W2011104561A5078423870 @default.
- W2011104561 hasAuthorship W2011104561A5082747831 @default.
- W2011104561 hasConcept C111766609 @default.
- W2011104561 hasConcept C120806208 @default.
- W2011104561 hasConcept C127313418 @default.
- W2011104561 hasConcept C144024400 @default.
- W2011104561 hasConcept C149923435 @default.
- W2011104561 hasConcept C156622251 @default.
- W2011104561 hasConcept C159390177 @default.
- W2011104561 hasConcept C159750122 @default.
- W2011104561 hasConcept C165205528 @default.