Matches in SemOpenAlex for { <https://semopenalex.org/work/W2011307050> ?p ?o ?g. }
- W2011307050 endingPage "112" @default.
- W2011307050 startingPage "69" @default.
- W2011307050 abstract "Quartz cement as syntaxial overgrowths is one of the two most abundant cements in sandstones. The main factors that control the amount of quartz cement in sandstones are: framework composition; residence time in the “silica mobility window”; and fluid composition, flow volume and pathways. Thus, the type of sedimentary basin in which a sand was deposited strongly controls the cementation process. Sandstones of rift basins (arkoses) and collision-margin basins (litharenites) generally have only a few percent quartz cement; quartzarenites and other quartzose sandstones of intracratonic, foreland and passive-margin basins have the most quartz cement. Clay and other mineral coatings on detrital quartz grains and entrapment of hydrocarbons in pores retard or prevent cementation by quartz, whereas extremely permeable sands that serve as major fluid conduits tend to sequester the greatest amounts of quartz cement. In rapidly subsiding basins, like the Gulf Coast and North Sea basins, most quartz cement is precipitated by cooling, ascending formation water at burial depths of several kilometers where temperatures range from 60° to 100° C. Cementation proceeds over millions of years, often under changing fluid compositions and temperatures. Sandstones with more than 10% imported quartz cement pose special problems of fluid flux and silica transport. If silica is transported entirely as H4SiO4, convective recycling of formation water seems to be essential to explain the volume of cement present in most sandstones. Precipitation from single-cycle, upward-migrating formation water is adequate to provide the volume of cement only if significant volumes of silica are transported in unidentified complexes. Modeling suggests that quartz cementation of sandstones in intracratonic basins is effected by advecting meteoric water, although independent petrographic, isotopic or fluid inclusion data are lacking. Silica for quartz cement comes from both shale and sandstone beds within the depositional basin, including possibly deeply buried rocks undergoing low-grade metamorphism, but the relative importance of potential sources remains controversial and likely differs for different formations. The most likely important silica sources within unmetamorphosed shales include clay transformation (chiefly illitization of smectite), dissolution/pressure solution of detrital grains, and dissolution of opal skeletal grains; the most likely important sources of silica within unmetamorphosed sandstones include pressure solution of detrital quartz grains at grain contacts and at stylolites, feldspar alteration/dissolution, and perhaps carbonate replacement of silicate minerals and the margins of some quartz grains. Silica released by pressure solution in many sandstones post-dates the episode of cementation by quartz; thus, this silica must migrate and cement shallower sandstones in the basin or escape altogether. Some quartz-cemented sandstones are separated vertically from potential silica source beds by a kilometer or more, requiring silica transport over long distances. The similarity of diagenetic sequences in sandstones of different composition and ages apparently is the result of the normal temperature and time-dependent maturation of sediments, organic matter and pore fluids during burial in sedimentary basins. Silica that forms overgrowths is released by one or more diagenetic processes that apparently are controlled by temperature and time. Most cementation by quartz takes place when sandstone beds were in the silica mobility window specific to a particular sedimentary basin. Important secondary controls are introduced by compartmentalized domains produced by faults (e.g., North Sea) or overpressure boundaries (e.g., Gulf Coast Tertiary). Shallow meteoric water precipitates only small amounts of silica cement (generally less than 5% in most fluvial and colian sandstones), except in certain soils and at water tables in high-flux sand aquifers. Soil silcretes are chiefly cemented by opal and microcrystalline quartz, whereas water-table silcretes have abundant normal syntaxial quartz overgrowths. Silica for silcrete cements and replacements comes from quartz, silicate minerals, and locally volcanic glass, in alluvium and bedrock." @default.
- W2011307050 created "2016-06-24" @default.
- W2011307050 creator A5002411427 @default.
- W2011307050 date "1989-01-01" @default.
- W2011307050 modified "2023-10-06" @default.
- W2011307050 title "Quartz cement in sandstones: a review" @default.
- W2011307050 cites W1964614041 @default.
- W2011307050 cites W1965148950 @default.
- W2011307050 cites W1967780032 @default.
- W2011307050 cites W1972151929 @default.
- W2011307050 cites W1973023297 @default.
- W2011307050 cites W1973339644 @default.
- W2011307050 cites W1975693500 @default.
- W2011307050 cites W1980445629 @default.
- W2011307050 cites W1987965304 @default.
- W2011307050 cites W1991472276 @default.
- W2011307050 cites W1991887942 @default.
- W2011307050 cites W1995117655 @default.
- W2011307050 cites W1996127304 @default.
- W2011307050 cites W1996897663 @default.
- W2011307050 cites W1999585703 @default.
- W2011307050 cites W2001286304 @default.
- W2011307050 cites W2002069940 @default.
- W2011307050 cites W2002477667 @default.
- W2011307050 cites W2010292438 @default.
- W2011307050 cites W2011879228 @default.
- W2011307050 cites W2011958243 @default.
- W2011307050 cites W2015309582 @default.
- W2011307050 cites W2019160177 @default.
- W2011307050 cites W2024170286 @default.
- W2011307050 cites W2029865928 @default.
- W2011307050 cites W2039943025 @default.
- W2011307050 cites W2041411076 @default.
- W2011307050 cites W2045429319 @default.
- W2011307050 cites W2048325661 @default.
- W2011307050 cites W2050300146 @default.
- W2011307050 cites W2050655165 @default.
- W2011307050 cites W2052302350 @default.
- W2011307050 cites W2052694638 @default.
- W2011307050 cites W2052777658 @default.
- W2011307050 cites W2058138873 @default.
- W2011307050 cites W2060002108 @default.
- W2011307050 cites W2063996020 @default.
- W2011307050 cites W2069341357 @default.
- W2011307050 cites W2070456812 @default.
- W2011307050 cites W2070957121 @default.
- W2011307050 cites W2071200985 @default.
- W2011307050 cites W2073911316 @default.
- W2011307050 cites W2077688820 @default.
- W2011307050 cites W2079156394 @default.
- W2011307050 cites W2081986141 @default.
- W2011307050 cites W2081999568 @default.
- W2011307050 cites W2086234625 @default.
- W2011307050 cites W2091409189 @default.
- W2011307050 cites W2092428938 @default.
- W2011307050 cites W2104392340 @default.
- W2011307050 cites W2104591486 @default.
- W2011307050 cites W2106519533 @default.
- W2011307050 cites W2106890627 @default.
- W2011307050 cites W2106927638 @default.
- W2011307050 cites W2108912216 @default.
- W2011307050 cites W2112910327 @default.
- W2011307050 cites W2116130991 @default.
- W2011307050 cites W2116969619 @default.
- W2011307050 cites W2124677150 @default.
- W2011307050 cites W2144310545 @default.
- W2011307050 cites W2159665055 @default.
- W2011307050 cites W2160371766 @default.
- W2011307050 cites W2160544087 @default.
- W2011307050 cites W2170842143 @default.
- W2011307050 cites W2179049426 @default.
- W2011307050 cites W2320215452 @default.
- W2011307050 cites W2321789547 @default.
- W2011307050 cites W2333867183 @default.
- W2011307050 cites W2334666938 @default.
- W2011307050 cites W4236496741 @default.
- W2011307050 doi "https://doi.org/10.1016/0012-8252(89)90019-6" @default.
- W2011307050 hasPublicationYear "1989" @default.
- W2011307050 type Work @default.
- W2011307050 sameAs 2011307050 @default.
- W2011307050 citedByCount "305" @default.
- W2011307050 countsByYear W20113070502012 @default.
- W2011307050 countsByYear W20113070502013 @default.
- W2011307050 countsByYear W20113070502014 @default.
- W2011307050 countsByYear W20113070502015 @default.
- W2011307050 countsByYear W20113070502016 @default.
- W2011307050 countsByYear W20113070502017 @default.
- W2011307050 countsByYear W20113070502018 @default.
- W2011307050 countsByYear W20113070502019 @default.
- W2011307050 countsByYear W20113070502020 @default.
- W2011307050 countsByYear W20113070502021 @default.
- W2011307050 countsByYear W20113070502022 @default.
- W2011307050 countsByYear W20113070502023 @default.
- W2011307050 crossrefType "journal-article" @default.
- W2011307050 hasAuthorship W2011307050A5002411427 @default.
- W2011307050 hasConcept C127313418 @default.
- W2011307050 hasConcept C138170599 @default.
- W2011307050 hasConcept C151730666 @default.