Matches in SemOpenAlex for { <https://semopenalex.org/work/W2011346872> ?p ?o ?g. }
- W2011346872 endingPage "141" @default.
- W2011346872 startingPage "126" @default.
- W2011346872 abstract "The effect of Fe2+, Fe3+, H2O2 and the photo-Fenton system (Fe2+ or 3+/H2O2/hv) on solar water disinfection (SODIS) at low temperature and at near neutral pH are discussed in detail. We focus on Escherichia coli K12 suspended in either MilliQ water, water containing mineral ions and in MilliQ water enriched with resorcinol, a model for natural organic matter (NOM). Recently, the photo-Fenton reagent at near neutral pH and at millimolar concentrations (0.6 mg −1 Fe2+ or 3+ and 10 mg L−1 H2O2), was demonstrated to be highly efficient not only for the acceleration of solar disinfection of river water, but also for the elimination of NOM, which is a known precursor for halogenated disinfection byproducts. In this work, these effects were systematically assessed at laboratory scale and in well controlled conditions excluding thermal inactivation. Besides the highly bactericidal properties of the photo-Fenton system at near neutral pH, a bactericidal effect of Fe2+ alone and of Fe3+ under irradiation (Fe3+/hv) were also observed. This was associated with diffusion and intracellular dark Fenton reactions for Fe2+, while the effect of Fe3+/hv was attributed to the adsorption of Fe3+ on the bacterial cell wall and subsequent photosensitization of these iron-bacteria exciplexes, leading to the direct oxidation of the cell membrane and the generation of ROS close to the target microorganism. In MilliQ water, photo-inactivation rates for E. coli were increased by 200% in the presence of Fe2+/hv compared to the basic SODIS system (hv) and up to 250% in the presence of Fe2+/H2O2/hv. When Fe3+ was added, photo-inactivation was enhanced up to 135% for Fe3+/hv and 145% for Fe3+/H2O2/hv. Inorganic ions contained in mineral water did generally inhibit the beneficial effect of Fe2+ or 3+ and H2O2 on bacterial inactivation. In contrast, the systems containing model NOM (resorcinol in MilliQ water, corresponding to 30 mg TOC L−1) resulted in a higher iron-photo-assisted bacterial inactivation. This was associated with the formation of Fe3+-organo bounds, which are stable at near neutral pH and undergo photosensitization under solar radiation leading to the generation of ROS and the oxidation of the organic compounds. Photo-inactivation in the presence of the photo-Fenton reagent was enhanced up to 320% for Fe2+/H2O2/hv and 355% for Fe3+/H2O2/hv, with a simultaneous mineralization of 90% TOC within 4 h. Based on these experimental results and supported by literature, a mechanistic interpretation of iron-catalyzed solar water disinfection is proposed, which illustrates the possible pathways involved in photo-inactivation of E. coli in the presence of Fe2+, Fe3+ and H2O2." @default.
- W2011346872 created "2016-06-24" @default.
- W2011346872 creator A5018708162 @default.
- W2011346872 creator A5053491293 @default.
- W2011346872 creator A5058647038 @default.
- W2011346872 date "2010-04-01" @default.
- W2011346872 modified "2023-10-17" @default.
- W2011346872 title "The effect of Fe2+, Fe3+, H2O2 and the photo-Fenton reagent at near neutral pH on the solar disinfection (SODIS) at low temperatures of water containing Escherichia coli K12" @default.
- W2011346872 cites W1494402484 @default.
- W2011346872 cites W1545512375 @default.
- W2011346872 cites W1750451500 @default.
- W2011346872 cites W1867547547 @default.
- W2011346872 cites W1964159516 @default.
- W2011346872 cites W1969887535 @default.
- W2011346872 cites W1972975424 @default.
- W2011346872 cites W1973355804 @default.
- W2011346872 cites W1975010088 @default.
- W2011346872 cites W1975590542 @default.
- W2011346872 cites W1975707464 @default.
- W2011346872 cites W1975798894 @default.
- W2011346872 cites W1975908063 @default.
- W2011346872 cites W1976364105 @default.
- W2011346872 cites W1982870743 @default.
- W2011346872 cites W1983228601 @default.
- W2011346872 cites W1983950205 @default.
- W2011346872 cites W1986632017 @default.
- W2011346872 cites W1986882536 @default.
- W2011346872 cites W1986909143 @default.
- W2011346872 cites W1987914940 @default.
- W2011346872 cites W1990465549 @default.
- W2011346872 cites W1998596519 @default.
- W2011346872 cites W2006426318 @default.
- W2011346872 cites W2009252693 @default.
- W2011346872 cites W2009266508 @default.
- W2011346872 cites W2009736016 @default.
- W2011346872 cites W2011129404 @default.
- W2011346872 cites W2012497165 @default.
- W2011346872 cites W2014874721 @default.
- W2011346872 cites W2019631977 @default.
- W2011346872 cites W2020140234 @default.
- W2011346872 cites W2021761917 @default.
- W2011346872 cites W2022728072 @default.
- W2011346872 cites W2026438601 @default.
- W2011346872 cites W2027651810 @default.
- W2011346872 cites W2028796170 @default.
- W2011346872 cites W2030946379 @default.
- W2011346872 cites W2031328021 @default.
- W2011346872 cites W2032756932 @default.
- W2011346872 cites W2037464378 @default.
- W2011346872 cites W2040629965 @default.
- W2011346872 cites W2043864050 @default.
- W2011346872 cites W2046503745 @default.
- W2011346872 cites W2052271759 @default.
- W2011346872 cites W2052714130 @default.
- W2011346872 cites W2056748759 @default.
- W2011346872 cites W2057920645 @default.
- W2011346872 cites W2058627133 @default.
- W2011346872 cites W2058830624 @default.
- W2011346872 cites W2061627861 @default.
- W2011346872 cites W2062511336 @default.
- W2011346872 cites W2069452071 @default.
- W2011346872 cites W2069950343 @default.
- W2011346872 cites W2070202149 @default.
- W2011346872 cites W2070346918 @default.
- W2011346872 cites W2072322474 @default.
- W2011346872 cites W2082877207 @default.
- W2011346872 cites W2083669451 @default.
- W2011346872 cites W2090279114 @default.
- W2011346872 cites W2091572613 @default.
- W2011346872 cites W2091913250 @default.
- W2011346872 cites W2092021350 @default.
- W2011346872 cites W2094535446 @default.
- W2011346872 cites W2094637212 @default.
- W2011346872 cites W2107536117 @default.
- W2011346872 cites W2109241058 @default.
- W2011346872 cites W2112027230 @default.
- W2011346872 cites W2114443210 @default.
- W2011346872 cites W2123769438 @default.
- W2011346872 cites W2124765964 @default.
- W2011346872 cites W2127242142 @default.
- W2011346872 cites W2148443611 @default.
- W2011346872 cites W2152636424 @default.
- W2011346872 cites W2154836565 @default.
- W2011346872 cites W2162743160 @default.
- W2011346872 cites W2170775410 @default.
- W2011346872 cites W4242905211 @default.
- W2011346872 doi "https://doi.org/10.1016/j.apcatb.2010.02.010" @default.
- W2011346872 hasPublicationYear "2010" @default.
- W2011346872 type Work @default.
- W2011346872 sameAs 2011346872 @default.
- W2011346872 citedByCount "248" @default.
- W2011346872 countsByYear W20113468722012 @default.
- W2011346872 countsByYear W20113468722013 @default.
- W2011346872 countsByYear W20113468722014 @default.
- W2011346872 countsByYear W20113468722015 @default.
- W2011346872 countsByYear W20113468722016 @default.
- W2011346872 countsByYear W20113468722017 @default.
- W2011346872 countsByYear W20113468722018 @default.