Matches in SemOpenAlex for { <https://semopenalex.org/work/W2011456585> ?p ?o ?g. }
- W2011456585 endingPage "96" @default.
- W2011456585 startingPage "86" @default.
- W2011456585 abstract "Many teleosts have evolved mechanisms to cope with ammonia toxicity in the brain when confronted with high environmental ammonia (HEA). In the present study, the possible role of conversion of accumulated ammonia to glutamine and other free amino acids in the brain of three freshwater teleosts differing in their sensitivities to ammonia was investigated. The detoxification mode of ammonia in brain is suggested to be through amination of glutamate to glutamine by the coupled activities of glutamate dehydrogenase (GDH), transaminase (aspartate aminotransaminase ‘AST’ and alanine aminotransaminase ‘ALT’) and glutamine synthetase (GSase). We investigated the metabolic response of amino acids in the brain of highly sensitive salmonid Oncorhynchus mykiss (rainbow trout), the less sensitive cyprinid Cyprinus carpio (common carp) and the highly resistant cyprinid Carassius auratus (goldfish) when exposed to 1 mM ammonia (as NH4HCO3; pH 7.9) for 0 h (control), 3 h, 12 h, 24 h, 48 h, 84 h and 180 h. Results show that HEA exposure increased ammonia accumulation significantly in the brain of all the three species from 12 h onwards. Unlike in trout, ammonia accumulation in carp and goldfish was restored to control levels (48–84 h); which was accompanied with a significant increase in glutamine content as well as GSase activity. In trout, glutamine levels also increased (84–180 h) but GSase was not activated. The elevated glutamine level in trout was accompanied by a significant depletion of the glutamate pool in contrast to the stable glutamate levels seen in carp and goldfish. This suggests a simultaneous increase in the rate of glutamate formation to match with the demand of glutamine formation in cyprinids. The activity of GDH was elevated significantly in carp and goldfish but remained unaltered in trout. Also, the transaminase enzymes (AST and ALT) were elevated significantly in exposed carp and goldfish while only ALT was up-regulated in trout. Consequently, in carp and goldfish both aspartate and alanine were utilized under HEA, whereas only alanine was consumed in trout. With ammonia treatment, significant changes in concentrations of other amino acids also occurred. None of the species could detoxify brain ammonia into urea. This study suggests that protective strategies to combat ammonia toxicity in brain are more pronounced in carp and goldfish than in trout." @default.
- W2011456585 created "2016-06-24" @default.
- W2011456585 creator A5001307155 @default.
- W2011456585 creator A5016540922 @default.
- W2011456585 creator A5033212200 @default.
- W2011456585 creator A5042579213 @default.
- W2011456585 creator A5066063804 @default.
- W2011456585 creator A5080111340 @default.
- W2011456585 creator A5090677487 @default.
- W2011456585 date "2013-04-01" @default.
- W2011456585 modified "2023-10-10" @default.
- W2011456585 title "Regulation of amino acid metabolism as a defensive strategy in the brain of three freshwater teleosts in response to high environmental ammonia exposure" @default.
- W2011456585 cites W1775749144 @default.
- W2011456585 cites W1920277652 @default.
- W2011456585 cites W1942398216 @default.
- W2011456585 cites W1953697071 @default.
- W2011456585 cites W1962754591 @default.
- W2011456585 cites W1964089368 @default.
- W2011456585 cites W1965531073 @default.
- W2011456585 cites W1969198442 @default.
- W2011456585 cites W1970891779 @default.
- W2011456585 cites W1972787626 @default.
- W2011456585 cites W1977464160 @default.
- W2011456585 cites W1979709962 @default.
- W2011456585 cites W1981964161 @default.
- W2011456585 cites W1994283878 @default.
- W2011456585 cites W1996407587 @default.
- W2011456585 cites W1998747066 @default.
- W2011456585 cites W2001402717 @default.
- W2011456585 cites W2004171427 @default.
- W2011456585 cites W2008481607 @default.
- W2011456585 cites W2008592253 @default.
- W2011456585 cites W2012629727 @default.
- W2011456585 cites W2015405026 @default.
- W2011456585 cites W2018934645 @default.
- W2011456585 cites W2019149342 @default.
- W2011456585 cites W2031086151 @default.
- W2011456585 cites W2032192849 @default.
- W2011456585 cites W2035911896 @default.
- W2011456585 cites W2037996793 @default.
- W2011456585 cites W2045704737 @default.
- W2011456585 cites W2048730747 @default.
- W2011456585 cites W2051886358 @default.
- W2011456585 cites W2053035117 @default.
- W2011456585 cites W2056296836 @default.
- W2011456585 cites W2058343116 @default.
- W2011456585 cites W2059106794 @default.
- W2011456585 cites W2061471518 @default.
- W2011456585 cites W2061976040 @default.
- W2011456585 cites W2063223323 @default.
- W2011456585 cites W2067040201 @default.
- W2011456585 cites W2068698618 @default.
- W2011456585 cites W2080433679 @default.
- W2011456585 cites W2091934331 @default.
- W2011456585 cites W2092240428 @default.
- W2011456585 cites W2092713296 @default.
- W2011456585 cites W2092851282 @default.
- W2011456585 cites W2104095612 @default.
- W2011456585 cites W2104706818 @default.
- W2011456585 cites W2118654754 @default.
- W2011456585 cites W2120746654 @default.
- W2011456585 cites W2137295925 @default.
- W2011456585 cites W2150977125 @default.
- W2011456585 cites W2152771994 @default.
- W2011456585 cites W2156057904 @default.
- W2011456585 cites W2161325325 @default.
- W2011456585 cites W2372821928 @default.
- W2011456585 cites W301340226 @default.
- W2011456585 cites W4236074613 @default.
- W2011456585 doi "https://doi.org/10.1016/j.aquatox.2013.01.003" @default.
- W2011456585 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/23384996" @default.
- W2011456585 hasPublicationYear "2013" @default.
- W2011456585 type Work @default.
- W2011456585 sameAs 2011456585 @default.
- W2011456585 citedByCount "82" @default.
- W2011456585 countsByYear W20114565852014 @default.
- W2011456585 countsByYear W20114565852015 @default.
- W2011456585 countsByYear W20114565852016 @default.
- W2011456585 countsByYear W20114565852017 @default.
- W2011456585 countsByYear W20114565852018 @default.
- W2011456585 countsByYear W20114565852019 @default.
- W2011456585 countsByYear W20114565852020 @default.
- W2011456585 countsByYear W20114565852021 @default.
- W2011456585 countsByYear W20114565852022 @default.
- W2011456585 countsByYear W20114565852023 @default.
- W2011456585 crossrefType "journal-article" @default.
- W2011456585 hasAuthorship W2011456585A5001307155 @default.
- W2011456585 hasAuthorship W2011456585A5016540922 @default.
- W2011456585 hasAuthorship W2011456585A5033212200 @default.
- W2011456585 hasAuthorship W2011456585A5042579213 @default.
- W2011456585 hasAuthorship W2011456585A5066063804 @default.
- W2011456585 hasAuthorship W2011456585A5080111340 @default.
- W2011456585 hasAuthorship W2011456585A5090677487 @default.
- W2011456585 hasConcept C170493617 @default.
- W2011456585 hasConcept C2776382133 @default.
- W2011456585 hasConcept C2776963538 @default.
- W2011456585 hasConcept C2777202666 @default.
- W2011456585 hasConcept C2778891732 @default.