Matches in SemOpenAlex for { <https://semopenalex.org/work/W2011470407> ?p ?o ?g. }
- W2011470407 endingPage "5795" @default.
- W2011470407 startingPage "5777" @default.
- W2011470407 abstract "Abstract The question of the generation of millennial oscillations by internal ocean dynamics is studied through deliberate use of the simplest geometry and surface forcing, namely a hemispheric ocean with time-independent mixed boundary conditions (autonomous system). The lowest-order model that supports free oscillations has three horizontal and two vertical boxes. The essential ingredients permitting the existence of the oscillations are turbulent mixing and freshwater forcing. The finite amplitude oscillations share the advective–convective–diffusive characteristics of neighboring stable thermal and haline steady states. There are limits to the quantity of precipitation in polar regions for the existence of oscillatory states. When the freshwater forcing amplitude is increased, the system evolves from a stable thermal state through a global bifurcation to a finite amplitude limit cycle. The period of the limit cycle remains constant when freshwater is increased until at a second global bifurcation it becomes infinite with a logarithmic behavior characteristic of a homoclinic bifurcation. For still higher values of freshwater, the system locks into the stable haline steady state. These results are confirmed through the use of a two-dimensional latitude–depth model. A sensitivity study carried out with the latter shows that the period (away from the logarithmic singularity) varies as (vertical mixing)−1/3. The implications of these results for the Dansgaard–Oeschger oscillations of the last glacial period are threefold: First, internal ocean dynamics in a salt-conserving ocean basin and with time-independent boundary conditions are sufficient to allow free transitions between a strong thermal and a weak haline circulation regime provided that the precipitation in polar oceans does not exceed a certain threshold. It is noteworthy that the snow accumulation rates of the last glacial period were about a fourth of Holocene values. Second, the period of the oscillatory state is determined internally, a possible alternative to studies that require external periodic forcing. The range of the periods when estimated with present determinations of oceanic mixing easily accommodates the observations. Third, if the abrupt warming that signals the beginning of a Dansgaard–Oeschger event is interpreted through the present modeling results, its cause is linked to the efficiency of mixing to accumulate heat for a considerable amount of time in the deep ocean when the thermohaline circulation is weak." @default.
- W2011470407 created "2016-06-24" @default.
- W2011470407 creator A5028898100 @default.
- W2011470407 creator A5055865392 @default.
- W2011470407 creator A5081628610 @default.
- W2011470407 date "2006-11-15" @default.
- W2011470407 modified "2023-10-18" @default.
- W2011470407 title "Bifurcation Structure of Thermohaline Millennial Oscillations" @default.
- W2011470407 cites W1551392196 @default.
- W2011470407 cites W1551582889 @default.
- W2011470407 cites W1658792376 @default.
- W2011470407 cites W1964313264 @default.
- W2011470407 cites W1968251041 @default.
- W2011470407 cites W1968787286 @default.
- W2011470407 cites W1970341213 @default.
- W2011470407 cites W1973029135 @default.
- W2011470407 cites W1974202147 @default.
- W2011470407 cites W1974769551 @default.
- W2011470407 cites W1975725752 @default.
- W2011470407 cites W1977328292 @default.
- W2011470407 cites W1987425355 @default.
- W2011470407 cites W1987899225 @default.
- W2011470407 cites W1990843978 @default.
- W2011470407 cites W1994601693 @default.
- W2011470407 cites W1994899812 @default.
- W2011470407 cites W1997120579 @default.
- W2011470407 cites W2001223491 @default.
- W2011470407 cites W2007104457 @default.
- W2011470407 cites W2008198311 @default.
- W2011470407 cites W2008299116 @default.
- W2011470407 cites W2008875043 @default.
- W2011470407 cites W2009347438 @default.
- W2011470407 cites W2014367444 @default.
- W2011470407 cites W2016199113 @default.
- W2011470407 cites W2018248848 @default.
- W2011470407 cites W2019937235 @default.
- W2011470407 cites W2021165163 @default.
- W2011470407 cites W2022660815 @default.
- W2011470407 cites W2024330627 @default.
- W2011470407 cites W2028478684 @default.
- W2011470407 cites W2032607053 @default.
- W2011470407 cites W2032716480 @default.
- W2011470407 cites W2036711636 @default.
- W2011470407 cites W2037409667 @default.
- W2011470407 cites W2051467875 @default.
- W2011470407 cites W2051761680 @default.
- W2011470407 cites W2063272484 @default.
- W2011470407 cites W2063913424 @default.
- W2011470407 cites W2065597820 @default.
- W2011470407 cites W2066692135 @default.
- W2011470407 cites W2074878468 @default.
- W2011470407 cites W2075173695 @default.
- W2011470407 cites W2080629859 @default.
- W2011470407 cites W2083356111 @default.
- W2011470407 cites W2084428435 @default.
- W2011470407 cites W2092483864 @default.
- W2011470407 cites W2099667979 @default.
- W2011470407 cites W2119689998 @default.
- W2011470407 cites W2153666586 @default.
- W2011470407 cites W2158351760 @default.
- W2011470407 cites W2160441274 @default.
- W2011470407 cites W2165783633 @default.
- W2011470407 cites W2172365653 @default.
- W2011470407 cites W2175524203 @default.
- W2011470407 cites W2178705056 @default.
- W2011470407 cites W2180148465 @default.
- W2011470407 cites W2180977136 @default.
- W2011470407 cites W2232626347 @default.
- W2011470407 cites W2279407401 @default.
- W2011470407 cites W2605543710 @default.
- W2011470407 cites W279560127 @default.
- W2011470407 cites W4243347369 @default.
- W2011470407 doi "https://doi.org/10.1175/jcli3950.1" @default.
- W2011470407 hasPublicationYear "2006" @default.
- W2011470407 type Work @default.
- W2011470407 sameAs 2011470407 @default.
- W2011470407 citedByCount "38" @default.
- W2011470407 countsByYear W20114704072012 @default.
- W2011470407 countsByYear W20114704072013 @default.
- W2011470407 countsByYear W20114704072014 @default.
- W2011470407 countsByYear W20114704072015 @default.
- W2011470407 countsByYear W20114704072016 @default.
- W2011470407 countsByYear W20114704072018 @default.
- W2011470407 countsByYear W20114704072019 @default.
- W2011470407 countsByYear W20114704072020 @default.
- W2011470407 countsByYear W20114704072021 @default.
- W2011470407 countsByYear W20114704072022 @default.
- W2011470407 countsByYear W20114704072023 @default.
- W2011470407 crossrefType "journal-article" @default.
- W2011470407 hasAuthorship W2011470407A5028898100 @default.
- W2011470407 hasAuthorship W2011470407A5055865392 @default.
- W2011470407 hasAuthorship W2011470407A5081628610 @default.
- W2011470407 hasBestOaLocation W20114704071 @default.
- W2011470407 hasConcept C121332964 @default.
- W2011470407 hasConcept C127313418 @default.
- W2011470407 hasConcept C180205008 @default.
- W2011470407 hasConcept C197115733 @default.
- W2011470407 hasConcept C49204034 @default.