Matches in SemOpenAlex for { <https://semopenalex.org/work/W2011484846> ?p ?o ?g. }
- W2011484846 endingPage "372" @default.
- W2011484846 startingPage "358" @default.
- W2011484846 abstract "This paper presents a new approach called clustering technique-based least square support vector machine (CT-LS-SVM) for the classification of EEG signals. Decision making is performed in two stages. In the first stage, clustering technique (CT) has been used to extract representative features of EEG data. In the second stage, least square support vector machine (LS-SVM) is applied to the extracted features to classify two-class EEG signals. To demonstrate the effectiveness of the proposed method, several experiments have been conducted on three publicly available benchmark databases, one for epileptic EEG data, one for mental imagery tasks EEG data and another one for motor imagery EEG data. Our proposed approach achieves an average sensitivity, specificity and classification accuracy of 94.92%, 93.44% and 94.18%, respectively, for the epileptic EEG data; 83.98%, 84.37% and 84.17% respectively, for the motor imagery EEG data; and 64.61%, 58.77% and 61.69%, respectively, for the mental imagery tasks EEG data. The performance of the CT-LS-SVM algorithm is compared in terms of classification accuracy and execution (running) time with our previous study where simple random sampling with a least square support vector machine (SRS-LS-SVM) was employed for EEG signal classification. We also compare the proposed method with other existing methods in the literature for the three databases. The experimental results show that the proposed algorithm can produce a better classification rate than the previous reported methods and takes much less execution time compared to the SRS-LS-SVM technique. The research findings in this paper indicate that the proposed approach is very efficient for classification of two-class EEG signals." @default.
- W2011484846 created "2016-06-24" @default.
- W2011484846 creator A5057305454 @default.
- W2011484846 creator A5061933200 @default.
- W2011484846 creator A5078200798 @default.
- W2011484846 date "2011-12-01" @default.
- W2011484846 modified "2023-10-11" @default.
- W2011484846 title "Clustering technique-based least square support vector machine for EEG signal classification" @default.
- W2011484846 cites W1529306955 @default.
- W2011484846 cites W1571829530 @default.
- W2011484846 cites W1974928465 @default.
- W2011484846 cites W1977707084 @default.
- W2011484846 cites W1984517374 @default.
- W2011484846 cites W2018585293 @default.
- W2011484846 cites W2018891159 @default.
- W2011484846 cites W2021970732 @default.
- W2011484846 cites W2036544512 @default.
- W2011484846 cites W2038421214 @default.
- W2011484846 cites W2048681532 @default.
- W2011484846 cites W2053744708 @default.
- W2011484846 cites W2058722442 @default.
- W2011484846 cites W2065998783 @default.
- W2011484846 cites W2080146971 @default.
- W2011484846 cites W2081700482 @default.
- W2011484846 cites W2081895431 @default.
- W2011484846 cites W2097171469 @default.
- W2011484846 cites W2098994855 @default.
- W2011484846 cites W2117251170 @default.
- W2011484846 cites W2119234283 @default.
- W2011484846 cites W2129023315 @default.
- W2011484846 cites W2138209918 @default.
- W2011484846 cites W2139212933 @default.
- W2011484846 cites W2140434576 @default.
- W2011484846 cites W2141178737 @default.
- W2011484846 cites W2158076175 @default.
- W2011484846 cites W2163492840 @default.
- W2011484846 cites W1562681882 @default.
- W2011484846 doi "https://doi.org/10.1016/j.cmpb.2010.11.014" @default.
- W2011484846 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/21168234" @default.
- W2011484846 hasPublicationYear "2011" @default.
- W2011484846 type Work @default.
- W2011484846 sameAs 2011484846 @default.
- W2011484846 citedByCount "194" @default.
- W2011484846 countsByYear W20114848462012 @default.
- W2011484846 countsByYear W20114848462013 @default.
- W2011484846 countsByYear W20114848462014 @default.
- W2011484846 countsByYear W20114848462015 @default.
- W2011484846 countsByYear W20114848462016 @default.
- W2011484846 countsByYear W20114848462017 @default.
- W2011484846 countsByYear W20114848462018 @default.
- W2011484846 countsByYear W20114848462019 @default.
- W2011484846 countsByYear W20114848462020 @default.
- W2011484846 countsByYear W20114848462021 @default.
- W2011484846 countsByYear W20114848462022 @default.
- W2011484846 countsByYear W20114848462023 @default.
- W2011484846 crossrefType "journal-article" @default.
- W2011484846 hasAuthorship W2011484846A5057305454 @default.
- W2011484846 hasAuthorship W2011484846A5061933200 @default.
- W2011484846 hasAuthorship W2011484846A5078200798 @default.
- W2011484846 hasConcept C118552586 @default.
- W2011484846 hasConcept C12267149 @default.
- W2011484846 hasConcept C124101348 @default.
- W2011484846 hasConcept C13280743 @default.
- W2011484846 hasConcept C153180895 @default.
- W2011484846 hasConcept C154945302 @default.
- W2011484846 hasConcept C15744967 @default.
- W2011484846 hasConcept C173201364 @default.
- W2011484846 hasConcept C185798385 @default.
- W2011484846 hasConcept C205649164 @default.
- W2011484846 hasConcept C41008148 @default.
- W2011484846 hasConcept C522805319 @default.
- W2011484846 hasConcept C54808283 @default.
- W2011484846 hasConcept C73555534 @default.
- W2011484846 hasConceptScore W2011484846C118552586 @default.
- W2011484846 hasConceptScore W2011484846C12267149 @default.
- W2011484846 hasConceptScore W2011484846C124101348 @default.
- W2011484846 hasConceptScore W2011484846C13280743 @default.
- W2011484846 hasConceptScore W2011484846C153180895 @default.
- W2011484846 hasConceptScore W2011484846C154945302 @default.
- W2011484846 hasConceptScore W2011484846C15744967 @default.
- W2011484846 hasConceptScore W2011484846C173201364 @default.
- W2011484846 hasConceptScore W2011484846C185798385 @default.
- W2011484846 hasConceptScore W2011484846C205649164 @default.
- W2011484846 hasConceptScore W2011484846C41008148 @default.
- W2011484846 hasConceptScore W2011484846C522805319 @default.
- W2011484846 hasConceptScore W2011484846C54808283 @default.
- W2011484846 hasConceptScore W2011484846C73555534 @default.
- W2011484846 hasIssue "3" @default.
- W2011484846 hasLocation W20114848461 @default.
- W2011484846 hasLocation W20114848462 @default.
- W2011484846 hasOpenAccess W2011484846 @default.
- W2011484846 hasPrimaryLocation W20114848461 @default.
- W2011484846 hasRelatedWork W131149161 @default.
- W2011484846 hasRelatedWork W1530078976 @default.
- W2011484846 hasRelatedWork W1533975670 @default.
- W2011484846 hasRelatedWork W1650914880 @default.
- W2011484846 hasRelatedWork W1978174090 @default.
- W2011484846 hasRelatedWork W1979904433 @default.