Matches in SemOpenAlex for { <https://semopenalex.org/work/W2011534852> ?p ?o ?g. }
- W2011534852 endingPage "S60" @default.
- W2011534852 startingPage "S53" @default.
- W2011534852 abstract "BACKGROUND Prediction of outcome after injury is fraught with uncertainty and statistically beset by misspecified models. Single–time point regression only gives prediction and inference at one time, of dubious value for continuous prediction of ongoing bleeding. New statistical machine learning techniques such as SuperLearner (SL) exist to make superior prediction at iterative time points while evaluating the changing relative importance of each measured variable on an outcome. This then can provide continuously changing prediction of outcome and evaluation of which clinical variables likely drive a particular outcome. METHODS PROMMTT data were evaluated using both naive (standard stepwise logistic regression) and SL techniques to develop a time-dependent prediction of future mortality within discrete time intervals. We avoided both underfitting and overfitting using cross validation to select an optimal combination of predictors among candidate predictors/machine learning algorithms. SL was also used to produce interval-specific robust measures of variable importance measures (VIM resulting in an ordered list of variables, by time point) that have the strongest impact on future mortality. RESULTS Nine hundred eighty patients had complete clinical and outcome data and were included in the analysis. The prediction of ongoing transfusion with SL was superior to the naive approach for all time intervals (correlations of cross-validated predictions with the outcome were 0.819, 0.789, 0.792 for time intervals 30–90, 90–180, 180–360, >360 minutes). The estimated VIM of mortality also changed significantly at each time point. CONCLUSION The SL technique for prediction of outcome from a complex dynamic multivariate data set is superior at each time interval to standard models. In addition, the SL VIM at each time point provides insight into the time-specific drivers of future outcome, patient trajectory, and targets for clinical intervention. Thus, this automated approach mimics clinical practice, changing form and content through time to optimize the accuracy of the prognosis based on the evolving trajectory of the patient." @default.
- W2011534852 created "2016-06-24" @default.
- W2011534852 creator A5005448381 @default.
- W2011534852 creator A5006890716 @default.
- W2011534852 creator A5008443530 @default.
- W2011534852 creator A5013304554 @default.
- W2011534852 creator A5019671942 @default.
- W2011534852 creator A5021738361 @default.
- W2011534852 creator A5024576216 @default.
- W2011534852 creator A5042251160 @default.
- W2011534852 creator A5043496074 @default.
- W2011534852 creator A5045934923 @default.
- W2011534852 creator A5056060130 @default.
- W2011534852 creator A5063592301 @default.
- W2011534852 creator A5075788767 @default.
- W2011534852 creator A5077177663 @default.
- W2011534852 creator A5081036923 @default.
- W2011534852 creator A5089504452 @default.
- W2011534852 creator A5090675988 @default.
- W2011534852 date "2013-07-01" @default.
- W2011534852 modified "2023-09-26" @default.
- W2011534852 title "Time-dependent prediction and evaluation of variable importance using superlearning in high-dimensional clinical data" @default.
- W2011534852 cites W122765791 @default.
- W2011534852 cites W1993526556 @default.
- W2011534852 cites W1994774845 @default.
- W2011534852 cites W1996373707 @default.
- W2011534852 cites W2064790857 @default.
- W2011534852 cites W2078088414 @default.
- W2011534852 cites W2108756852 @default.
- W2011534852 cites W2138574678 @default.
- W2011534852 cites W2156773861 @default.
- W2011534852 cites W2169562700 @default.
- W2011534852 cites W3106333376 @default.
- W2011534852 cites W4294541781 @default.
- W2011534852 doi "https://doi.org/10.1097/ta.0b013e3182914553" @default.
- W2011534852 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3744063" @default.
- W2011534852 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/23778512" @default.
- W2011534852 hasPublicationYear "2013" @default.
- W2011534852 type Work @default.
- W2011534852 sameAs 2011534852 @default.
- W2011534852 citedByCount "30" @default.
- W2011534852 countsByYear W20115348522013 @default.
- W2011534852 countsByYear W20115348522015 @default.
- W2011534852 countsByYear W20115348522016 @default.
- W2011534852 countsByYear W20115348522017 @default.
- W2011534852 countsByYear W20115348522018 @default.
- W2011534852 countsByYear W20115348522019 @default.
- W2011534852 countsByYear W20115348522020 @default.
- W2011534852 countsByYear W20115348522021 @default.
- W2011534852 countsByYear W20115348522022 @default.
- W2011534852 countsByYear W20115348522023 @default.
- W2011534852 crossrefType "journal-article" @default.
- W2011534852 hasAuthorship W2011534852A5005448381 @default.
- W2011534852 hasAuthorship W2011534852A5006890716 @default.
- W2011534852 hasAuthorship W2011534852A5008443530 @default.
- W2011534852 hasAuthorship W2011534852A5013304554 @default.
- W2011534852 hasAuthorship W2011534852A5019671942 @default.
- W2011534852 hasAuthorship W2011534852A5021738361 @default.
- W2011534852 hasAuthorship W2011534852A5024576216 @default.
- W2011534852 hasAuthorship W2011534852A5042251160 @default.
- W2011534852 hasAuthorship W2011534852A5043496074 @default.
- W2011534852 hasAuthorship W2011534852A5045934923 @default.
- W2011534852 hasAuthorship W2011534852A5056060130 @default.
- W2011534852 hasAuthorship W2011534852A5063592301 @default.
- W2011534852 hasAuthorship W2011534852A5075788767 @default.
- W2011534852 hasAuthorship W2011534852A5077177663 @default.
- W2011534852 hasAuthorship W2011534852A5081036923 @default.
- W2011534852 hasAuthorship W2011534852A5089504452 @default.
- W2011534852 hasAuthorship W2011534852A5090675988 @default.
- W2011534852 hasBestOaLocation W20115348522 @default.
- W2011534852 hasConcept C103402496 @default.
- W2011534852 hasConcept C105795698 @default.
- W2011534852 hasConcept C107038049 @default.
- W2011534852 hasConcept C119857082 @default.
- W2011534852 hasConcept C134306372 @default.
- W2011534852 hasConcept C138885662 @default.
- W2011534852 hasConcept C144237770 @default.
- W2011534852 hasConcept C148220186 @default.
- W2011534852 hasConcept C151956035 @default.
- W2011534852 hasConcept C154945302 @default.
- W2011534852 hasConcept C161584116 @default.
- W2011534852 hasConcept C182365436 @default.
- W2011534852 hasConcept C22019652 @default.
- W2011534852 hasConcept C2776214188 @default.
- W2011534852 hasConcept C2779466056 @default.
- W2011534852 hasConcept C33923547 @default.
- W2011534852 hasConcept C41008148 @default.
- W2011534852 hasConcept C45804977 @default.
- W2011534852 hasConcept C50644808 @default.
- W2011534852 hasConcept C83546350 @default.
- W2011534852 hasConceptScore W2011534852C103402496 @default.
- W2011534852 hasConceptScore W2011534852C105795698 @default.
- W2011534852 hasConceptScore W2011534852C107038049 @default.
- W2011534852 hasConceptScore W2011534852C119857082 @default.
- W2011534852 hasConceptScore W2011534852C134306372 @default.
- W2011534852 hasConceptScore W2011534852C138885662 @default.
- W2011534852 hasConceptScore W2011534852C144237770 @default.
- W2011534852 hasConceptScore W2011534852C148220186 @default.