Matches in SemOpenAlex for { <https://semopenalex.org/work/W2011635048> ?p ?o ?g. }
- W2011635048 endingPage "167" @default.
- W2011635048 startingPage "160" @default.
- W2011635048 abstract "Like most natural product libraries animal venoms have long been recognized as potentially rich source of biologically active molecules with the potential to be mined for the discovery of drugs, drug leads and/or biosimilars. In this work we demonstrate as a proof of concept a novel approach to explore venoms for potential biosimilarity to other drugs based on their ability to alter the transcriptomes of test cell lines followed by informatic searches and Connectivity Mapping to match the action of the venom on the cell gene expression to that of other drugs in the Connectivity Map (C-Map) database. As our test animal venom we chose Heloderma suspectum venom (Gila monster) since exendin-4, a glucagon-like peptide 1 receptor agonist, isolated from the venom is currently on the market to treat type 2 diabetes. The action of Byetta® (exentide, synthetic exendin-4), was also used in transcriptome studies. Analysis of transcriptomes from cells treated with the venom or the drug showed similarities as well as differences. The former case was primarily attributed to the fact that Gila monster venom likely contains a variety of biologically active molecules that could alter the MCF7 cell transcriptome compared to that of the single perturbant Byetta®. Using Ingenuity Pathway Analysis software, insulin-like growth factor 1 signaling was identified in the category of “Top Canonical Pathways” for both the venom and Byetta®. In the category of “Top Molecules” up-regulated, both venom and Byetta® shared IL-8, cyclic AMP-dependent transcription factor 3 (ATF-3), neuron-derived orphan receptor 1 (NR4A3), dexamethasone-induced Ras-related protein 1 (RASD1) and early growth response protein 1, (EGR-1) all with potential relevance in diabetes. Using Connectivity Mapping, Gila monster venom showed positive correlation with 1732 instances and negative correlation with 793 instances in the Connectivity database whereas Byetta® showed positive correlation with 1692 instances and negative correlation with 868 instances. Interestingly, the Gila monster venom and Byetta® both showed positive correlation with the anti-diabetic drugs troglitazone, of the thiazolidinedione class, and metformin, of the biguanide class, although Byetta® as a glucagon-like peptide-1 (GLP-1) agonist functions in a different manner than either of these two classes of anti-diabetic drugs. In summary, despite the fact that Gila monster venom contains a mixture of biologically active molecules, similarities in terms of perturbation of gene expression profiles on MCF7 cells were observed between the venom and the drug Byetta®. Furthermore, using Connectivity Mapping the Gila monster venom was demonstrated to have nodes of positive correlation to several anti-diabetic drugs two of which were the same as observed with Byetta®. Therefore, this study suggests that by using this approach novel drug activities heretofore unconsidered may be discovered in venoms using informatic tools and Connectivity Mapping." @default.
- W2011635048 created "2016-06-24" @default.
- W2011635048 creator A5003556156 @default.
- W2011635048 creator A5035185408 @default.
- W2011635048 creator A5041069370 @default.
- W2011635048 creator A5052434482 @default.
- W2011635048 creator A5069544083 @default.
- W2011635048 date "2013-07-01" @default.
- W2011635048 modified "2023-09-24" @default.
- W2011635048 title "Connectivity maps for biosimilar drug discovery in venoms: The case of Gila Monster Venom and the anti-diabetes drug Byetta®" @default.
- W2011635048 cites W1507814807 @default.
- W2011635048 cites W1583635771 @default.
- W2011635048 cites W1963829398 @default.
- W2011635048 cites W1974092461 @default.
- W2011635048 cites W1975744071 @default.
- W2011635048 cites W1983107949 @default.
- W2011635048 cites W2010303801 @default.
- W2011635048 cites W2024159598 @default.
- W2011635048 cites W2025871901 @default.
- W2011635048 cites W2029124049 @default.
- W2011635048 cites W2029980980 @default.
- W2011635048 cites W2032529224 @default.
- W2011635048 cites W2033076794 @default.
- W2011635048 cites W2038645369 @default.
- W2011635048 cites W2042627647 @default.
- W2011635048 cites W2046283940 @default.
- W2011635048 cites W2066548087 @default.
- W2011635048 cites W2066754426 @default.
- W2011635048 cites W2083707819 @default.
- W2011635048 cites W2089615360 @default.
- W2011635048 cites W2098730220 @default.
- W2011635048 cites W2121604817 @default.
- W2011635048 cites W2135923112 @default.
- W2011635048 cites W2141277427 @default.
- W2011635048 cites W2145506487 @default.
- W2011635048 cites W2165853760 @default.
- W2011635048 doi "https://doi.org/10.1016/j.toxicon.2013.03.018" @default.
- W2011635048 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/23602926" @default.
- W2011635048 hasPublicationYear "2013" @default.
- W2011635048 type Work @default.
- W2011635048 sameAs 2011635048 @default.
- W2011635048 citedByCount "22" @default.
- W2011635048 countsByYear W20116350482014 @default.
- W2011635048 countsByYear W20116350482015 @default.
- W2011635048 countsByYear W20116350482016 @default.
- W2011635048 countsByYear W20116350482017 @default.
- W2011635048 countsByYear W20116350482018 @default.
- W2011635048 countsByYear W20116350482019 @default.
- W2011635048 countsByYear W20116350482020 @default.
- W2011635048 countsByYear W20116350482022 @default.
- W2011635048 countsByYear W20116350482023 @default.
- W2011635048 crossrefType "journal-article" @default.
- W2011635048 hasAuthorship W2011635048A5003556156 @default.
- W2011635048 hasAuthorship W2011635048A5035185408 @default.
- W2011635048 hasAuthorship W2011635048A5041069370 @default.
- W2011635048 hasAuthorship W2011635048A5052434482 @default.
- W2011635048 hasAuthorship W2011635048A5069544083 @default.
- W2011635048 hasConcept C104317684 @default.
- W2011635048 hasConcept C117287731 @default.
- W2011635048 hasConcept C150194340 @default.
- W2011635048 hasConcept C162317418 @default.
- W2011635048 hasConcept C2779448229 @default.
- W2011635048 hasConcept C2780035454 @default.
- W2011635048 hasConcept C54355233 @default.
- W2011635048 hasConcept C55493867 @default.
- W2011635048 hasConcept C60644358 @default.
- W2011635048 hasConcept C70721500 @default.
- W2011635048 hasConcept C74187038 @default.
- W2011635048 hasConcept C86803240 @default.
- W2011635048 hasConcept C98274493 @default.
- W2011635048 hasConceptScore W2011635048C104317684 @default.
- W2011635048 hasConceptScore W2011635048C117287731 @default.
- W2011635048 hasConceptScore W2011635048C150194340 @default.
- W2011635048 hasConceptScore W2011635048C162317418 @default.
- W2011635048 hasConceptScore W2011635048C2779448229 @default.
- W2011635048 hasConceptScore W2011635048C2780035454 @default.
- W2011635048 hasConceptScore W2011635048C54355233 @default.
- W2011635048 hasConceptScore W2011635048C55493867 @default.
- W2011635048 hasConceptScore W2011635048C60644358 @default.
- W2011635048 hasConceptScore W2011635048C70721500 @default.
- W2011635048 hasConceptScore W2011635048C74187038 @default.
- W2011635048 hasConceptScore W2011635048C86803240 @default.
- W2011635048 hasConceptScore W2011635048C98274493 @default.
- W2011635048 hasLocation W20116350481 @default.
- W2011635048 hasLocation W20116350482 @default.
- W2011635048 hasOpenAccess W2011635048 @default.
- W2011635048 hasPrimaryLocation W20116350481 @default.
- W2011635048 hasRelatedWork W1982364066 @default.
- W2011635048 hasRelatedWork W2002649322 @default.
- W2011635048 hasRelatedWork W2021770894 @default.
- W2011635048 hasRelatedWork W2052509088 @default.
- W2011635048 hasRelatedWork W2075873312 @default.
- W2011635048 hasRelatedWork W2470437264 @default.
- W2011635048 hasRelatedWork W2896822135 @default.
- W2011635048 hasRelatedWork W4205257317 @default.
- W2011635048 hasRelatedWork W4220854187 @default.
- W2011635048 hasRelatedWork W4220883961 @default.
- W2011635048 hasVolume "69" @default.