Matches in SemOpenAlex for { <https://semopenalex.org/work/W2011697614> ?p ?o ?g. }
- W2011697614 abstract "Abstract This paper proposes a seemingly unequivocal experimental and/or molecular dynamics simulation test of the viability of the compressible Navier–Stokes–Fourier (NSF) equations for gases in the continuum region, namely for near-zero Knudsen ( Kn ) numbers. While experimental gas kineticists have long known of the inadequacy of the NSF equations for rarefied gases (i.e., noncontinua), for which Kn is no longer small, it is nevertheless believed by fluid mechanicians that the NSF equations remain valid for gaseous continua. The author is, however, unaware of the existence of any unequivocal experimental (or simulation) data to support this view. Indeed, based upon recent work by the author and others on the subject of bivelocity hydrodynamics [Brenner, H. (2013). Proposal of a critical test of the Navier–Stokes–Fourier paradigm for compressible fluid continua. Physical Review E 87 , 013014]; [Brenner, H., Dongari, N., & Reese, J. M. (2013). A molecular dynamics test of the Navier–Stokes–Fourier paradigm for compressible gaseous continua. arXiv:1301.1716 [physics.flu-dyn]], ample reasons exist for believing that the NSF equations may not, in fact, be valid for compressible continua. Given the fundamental role played by the NSF equations in both theoretical and applied physics, it would obviously be well if the assumption of the viability of the compressible NSF equations was put to a variety of experimental tests, particularly if the interpretations of those tests were seemingly unequivocal as a consequence of the simplicity of their interpretation and ease of execution. This paper adds one such test to that cited above. It involves contemplating a gaseous continuum confined in the annular space between two co-axial circular cylinders rotating steadily at the same angular velocity while, at the same time, both cylinder walls are maintained at a common temperature, say T c . In such circumstances the NSF equations, assumed to govern the resulting rigid-body rotation of the fluid, trivially predict the gas’s temperature to be uniform at the value T c throughout the entire annular body of gas between the cylinders. The proposed test consists of measuring the temperature distribution so as to establish if, in fact, this predicted temperature uniformity is actually observed in practice — and, if not, of establishing whether the observed temperature distribution varies with such experimentally-controllable parameters as the cylinders’ angular velocity or the gas’s mean pressure. Was the temperature distribution found to be nonuniform the compressible NSF equations for continua would have to be abandoned as physically unsound. Anticipating that outcome we have, for the prescribed experimental arrangement and protocol, solved the corresponding bivelocity equations in order to establish if this model accords better with the test data. For, in contrast with NSF behavior, the bivelocity temperature distribution is predicted to be nonuniform." @default.
- W2011697614 created "2016-06-24" @default.
- W2011697614 creator A5013768472 @default.
- W2011697614 date "2013-09-01" @default.
- W2011697614 modified "2023-09-25" @default.
- W2011697614 title "Steady-state heat conduction in a gas undergoing rigid-body rotation. Comparison of Navier–Stokes–Fourier and bivelocity paradigms" @default.
- W2011697614 cites W1263466445 @default.
- W2011697614 cites W1509452500 @default.
- W2011697614 cites W1524755577 @default.
- W2011697614 cites W1538135945 @default.
- W2011697614 cites W1593575446 @default.
- W2011697614 cites W1677778436 @default.
- W2011697614 cites W1965695672 @default.
- W2011697614 cites W1980169070 @default.
- W2011697614 cites W1983719217 @default.
- W2011697614 cites W1987681149 @default.
- W2011697614 cites W1989271293 @default.
- W2011697614 cites W1993059891 @default.
- W2011697614 cites W1998518575 @default.
- W2011697614 cites W2000108469 @default.
- W2011697614 cites W2000273046 @default.
- W2011697614 cites W2001672996 @default.
- W2011697614 cites W2002336210 @default.
- W2011697614 cites W2013240041 @default.
- W2011697614 cites W2018375831 @default.
- W2011697614 cites W2018750701 @default.
- W2011697614 cites W2021379324 @default.
- W2011697614 cites W2030623681 @default.
- W2011697614 cites W2031365352 @default.
- W2011697614 cites W2032232368 @default.
- W2011697614 cites W2035892506 @default.
- W2011697614 cites W2046208813 @default.
- W2011697614 cites W2046855544 @default.
- W2011697614 cites W2047091143 @default.
- W2011697614 cites W2066944881 @default.
- W2011697614 cites W2067143447 @default.
- W2011697614 cites W2073909504 @default.
- W2011697614 cites W2075504980 @default.
- W2011697614 cites W2078298270 @default.
- W2011697614 cites W2091101305 @default.
- W2011697614 cites W2092249009 @default.
- W2011697614 cites W2093026955 @default.
- W2011697614 cites W2113840106 @default.
- W2011697614 cites W2148696371 @default.
- W2011697614 cites W2151245172 @default.
- W2011697614 cites W2158396891 @default.
- W2011697614 cites W2263170054 @default.
- W2011697614 cites W2313151862 @default.
- W2011697614 cites W23224330 @default.
- W2011697614 cites W2330051323 @default.
- W2011697614 cites W2331605313 @default.
- W2011697614 cites W2486762542 @default.
- W2011697614 cites W2964004243 @default.
- W2011697614 cites W3104956079 @default.
- W2011697614 cites W39392801 @default.
- W2011697614 cites W2583676704 @default.
- W2011697614 doi "https://doi.org/10.1016/j.ijengsci.2013.03.009" @default.
- W2011697614 hasPublicationYear "2013" @default.
- W2011697614 type Work @default.
- W2011697614 sameAs 2011697614 @default.
- W2011697614 citedByCount "5" @default.
- W2011697614 countsByYear W20116976142014 @default.
- W2011697614 countsByYear W20116976142015 @default.
- W2011697614 countsByYear W20116976142016 @default.
- W2011697614 countsByYear W20116976142017 @default.
- W2011697614 countsByYear W20116976142018 @default.
- W2011697614 crossrefType "journal-article" @default.
- W2011697614 hasAuthorship W2011697614A5013768472 @default.
- W2011697614 hasConcept C102519508 @default.
- W2011697614 hasConcept C121332964 @default.
- W2011697614 hasConcept C121838276 @default.
- W2011697614 hasConcept C134306372 @default.
- W2011697614 hasConcept C2781278361 @default.
- W2011697614 hasConcept C33923547 @default.
- W2011697614 hasConcept C5192115 @default.
- W2011697614 hasConcept C57879066 @default.
- W2011697614 hasConcept C74650414 @default.
- W2011697614 hasConcept C84655787 @default.
- W2011697614 hasConceptScore W2011697614C102519508 @default.
- W2011697614 hasConceptScore W2011697614C121332964 @default.
- W2011697614 hasConceptScore W2011697614C121838276 @default.
- W2011697614 hasConceptScore W2011697614C134306372 @default.
- W2011697614 hasConceptScore W2011697614C2781278361 @default.
- W2011697614 hasConceptScore W2011697614C33923547 @default.
- W2011697614 hasConceptScore W2011697614C5192115 @default.
- W2011697614 hasConceptScore W2011697614C57879066 @default.
- W2011697614 hasConceptScore W2011697614C74650414 @default.
- W2011697614 hasConceptScore W2011697614C84655787 @default.
- W2011697614 hasLocation W20116976141 @default.
- W2011697614 hasOpenAccess W2011697614 @default.
- W2011697614 hasPrimaryLocation W20116976141 @default.
- W2011697614 hasRelatedWork W1121022715 @default.
- W2011697614 hasRelatedWork W1490413620 @default.
- W2011697614 hasRelatedWork W1564054719 @default.
- W2011697614 hasRelatedWork W1587866666 @default.
- W2011697614 hasRelatedWork W1965114889 @default.
- W2011697614 hasRelatedWork W1976573198 @default.
- W2011697614 hasRelatedWork W2025997096 @default.
- W2011697614 hasRelatedWork W2036840826 @default.
- W2011697614 hasRelatedWork W2074042730 @default.