Matches in SemOpenAlex for { <https://semopenalex.org/work/W2011731909> ?p ?o ?g. }
- W2011731909 endingPage "423" @default.
- W2011731909 startingPage "401" @default.
- W2011731909 abstract "Among the different computational intelligence techniques avalaible for hyperspectral data classification, support vector machines (SVMs) have played a dominant role. Recently, a new learning algorithm for single-layer feedforward neural networks called the extreme learning machine (ELM) was proposed. This technique is competitive with SVMs in terms of accuracy, learning speed, and computational scalability. In this article, we propose and evaluate the use of ELM for land-cover classification from hyperspectral images. In addition, we consider two ELM-based techniques integrating spectral and spatial information of the image. The first is a scheme that uses a majority vote approach in order to combine the results of a pixel-wise spectral classification by ELM and a segmentation map obtained by a watershed algorithm. The second introduces spatial information from a small spatial neighbourhood after the classification by ELM. We show the usefulness of spatial–spectral ELM-based classification techniques in hyperspectral imaging. The results are compared to those obtained by similar SVM-based techniques and show improved classification results and much lower execution time. These simple and computationally cheap methods can be combined with others traditionally applied to hyperspectral images." @default.
- W2011731909 created "2016-06-24" @default.
- W2011731909 creator A5018628722 @default.
- W2011731909 creator A5037479005 @default.
- W2011731909 creator A5043357836 @default.
- W2011731909 date "2014-01-02" @default.
- W2011731909 modified "2023-09-23" @default.
- W2011731909 title "Exploring ELM-based spatial–spectral classification of hyperspectral images" @default.
- W2011731909 cites W1984289579 @default.
- W2011731909 cites W1990938413 @default.
- W2011731909 cites W1993717606 @default.
- W2011731909 cites W1997413270 @default.
- W2011731909 cites W2001298023 @default.
- W2011731909 cites W2017212187 @default.
- W2011731909 cites W2026131661 @default.
- W2011731909 cites W2028759731 @default.
- W2011731909 cites W2035026907 @default.
- W2011731909 cites W2040604977 @default.
- W2011731909 cites W2043665634 @default.
- W2011731909 cites W2047431064 @default.
- W2011731909 cites W2048308819 @default.
- W2011731909 cites W2059089906 @default.
- W2011731909 cites W2063907334 @default.
- W2011731909 cites W2076837258 @default.
- W2011731909 cites W2104896032 @default.
- W2011731909 cites W2111072639 @default.
- W2011731909 cites W2114819256 @default.
- W2011731909 cites W2122040390 @default.
- W2011731909 cites W2127495569 @default.
- W2011731909 cites W2131697388 @default.
- W2011731909 cites W2131864940 @default.
- W2011731909 cites W2136251662 @default.
- W2011731909 cites W2138260443 @default.
- W2011731909 cites W2141695047 @default.
- W2011731909 cites W2149471024 @default.
- W2011731909 cites W2152276863 @default.
- W2011731909 cites W2153635508 @default.
- W2011731909 cites W2156909104 @default.
- W2011731909 cites W2160662337 @default.
- W2011731909 cites W2164330327 @default.
- W2011731909 cites W2164437025 @default.
- W2011731909 cites W2165967751 @default.
- W2011731909 cites W4214564766 @default.
- W2011731909 doi "https://doi.org/10.1080/01431161.2013.869633" @default.
- W2011731909 hasPublicationYear "2014" @default.
- W2011731909 type Work @default.
- W2011731909 sameAs 2011731909 @default.
- W2011731909 citedByCount "49" @default.
- W2011731909 countsByYear W20117319092014 @default.
- W2011731909 countsByYear W20117319092015 @default.
- W2011731909 countsByYear W20117319092016 @default.
- W2011731909 countsByYear W20117319092017 @default.
- W2011731909 countsByYear W20117319092018 @default.
- W2011731909 countsByYear W20117319092019 @default.
- W2011731909 countsByYear W20117319092020 @default.
- W2011731909 countsByYear W20117319092021 @default.
- W2011731909 countsByYear W20117319092022 @default.
- W2011731909 countsByYear W20117319092023 @default.
- W2011731909 crossrefType "journal-article" @default.
- W2011731909 hasAuthorship W2011731909A5018628722 @default.
- W2011731909 hasAuthorship W2011731909A5037479005 @default.
- W2011731909 hasAuthorship W2011731909A5043357836 @default.
- W2011731909 hasConcept C121332964 @default.
- W2011731909 hasConcept C12267149 @default.
- W2011731909 hasConcept C153180895 @default.
- W2011731909 hasConcept C154945302 @default.
- W2011731909 hasConcept C159078339 @default.
- W2011731909 hasConcept C159620131 @default.
- W2011731909 hasConcept C160633673 @default.
- W2011731909 hasConcept C183852935 @default.
- W2011731909 hasConcept C205649164 @default.
- W2011731909 hasConcept C2780150128 @default.
- W2011731909 hasConcept C33390570 @default.
- W2011731909 hasConcept C41008148 @default.
- W2011731909 hasConcept C50644808 @default.
- W2011731909 hasConcept C62520636 @default.
- W2011731909 hasConcept C62649853 @default.
- W2011731909 hasConceptScore W2011731909C121332964 @default.
- W2011731909 hasConceptScore W2011731909C12267149 @default.
- W2011731909 hasConceptScore W2011731909C153180895 @default.
- W2011731909 hasConceptScore W2011731909C154945302 @default.
- W2011731909 hasConceptScore W2011731909C159078339 @default.
- W2011731909 hasConceptScore W2011731909C159620131 @default.
- W2011731909 hasConceptScore W2011731909C160633673 @default.
- W2011731909 hasConceptScore W2011731909C183852935 @default.
- W2011731909 hasConceptScore W2011731909C205649164 @default.
- W2011731909 hasConceptScore W2011731909C2780150128 @default.
- W2011731909 hasConceptScore W2011731909C33390570 @default.
- W2011731909 hasConceptScore W2011731909C41008148 @default.
- W2011731909 hasConceptScore W2011731909C50644808 @default.
- W2011731909 hasConceptScore W2011731909C62520636 @default.
- W2011731909 hasConceptScore W2011731909C62649853 @default.
- W2011731909 hasIssue "2" @default.
- W2011731909 hasLocation W20117319091 @default.
- W2011731909 hasOpenAccess W2011731909 @default.
- W2011731909 hasPrimaryLocation W20117319091 @default.
- W2011731909 hasRelatedWork W1575350201 @default.
- W2011731909 hasRelatedWork W1967574999 @default.