Matches in SemOpenAlex for { <https://semopenalex.org/work/W2011902014> ?p ?o ?g. }
- W2011902014 endingPage "210" @default.
- W2011902014 startingPage "201" @default.
- W2011902014 abstract "Three types of inorganic fillers – fumed nonporous nano-silica, synthesized mesoporous MCM-41 and microporous zeolite 4A, were incorporated into the PVDF matrix to prepare mixed matrix membranes. The objective of this study was to investigate the effects of pore structure and particle size of the inorganic fillers on the gas transport properties of the mixed matrix membranes. The membranes were characterized using thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), X-ray diffraction (XRD), contact angle tests and scanning electron microscopy (SEM). The mechanical properties of the membranes were determined using a tensile stress–strain machine. With the incorporation of the inorganic fillers, the thermal stability of the composite membranes was reduced with lower degradation temperature while the melting temperature and crystallizing temperature seemed to be unaffected. The DSC results showed that the crystallinity of the composite membranes had increased when compared with the pure PVDF membrane. In addition, the incorporation of MCM-41 had induced PVDF crystalline phase transformation from α to β phase. This phenomenon was not observed in PVDF/SiO2 and PVDF/4A composite membranes as indicated by the XRD results. In order to fully study the interface properties between the inorganic fillers and polymer chains, the density values of the membranes were experimentally determined and compared with the theoretical values. The experimentally determined density values of the composite membranes were lower than the theoretical values and the void volume fractions were calculated accordingly. The single gas (He, CO2, O2 and N2) permeabilities of the resulting membranes were carried out. The gas permeabilities of the three composite membranes exhibited similar behaviors, especially at lower inorganic filler loadings, although the inorganic fillers had different pore structures and particle sizes. The highest permeabilities for CO2 and O2 were obtained by PVDF/4A 32% composite membrane, which were 3.26 and 0.41 Barrer, respectively, and the highest permeabilities for He and N2 were obtained by PVDF/MCM-41 32% composite membrane, which were 10.2 and 0.14 Barrer, respectively. These permeabilities are much higher than those of pure PVDF membrane. The highest selectivities of 120.7, 33.1 and 4.6 for He/N2, CO2/N2, and O2/N2, were obtained by the PVDF/SiO2 4%, PVDF/SiO2 32% and PVDF/SiO2 24%, respectively, which are also higher than those of pure PVDF membrane." @default.
- W2011902014 created "2016-06-24" @default.
- W2011902014 creator A5050220948 @default.
- W2011902014 creator A5060565242 @default.
- W2011902014 date "2012-06-01" @default.
- W2011902014 modified "2023-10-07" @default.
- W2011902014 title "Preparation and characterization of mixed matrix membranes based on PVDF and three inorganic fillers (fumed nonporous silica, zeolite 4A and mesoporous MCM-41) for gas separation" @default.
- W2011902014 cites W1970990047 @default.
- W2011902014 cites W1976074314 @default.
- W2011902014 cites W1977115100 @default.
- W2011902014 cites W2002063692 @default.
- W2011902014 cites W2004866846 @default.
- W2011902014 cites W2005990572 @default.
- W2011902014 cites W2006024805 @default.
- W2011902014 cites W2019719677 @default.
- W2011902014 cites W2022353023 @default.
- W2011902014 cites W2035451955 @default.
- W2011902014 cites W2038732198 @default.
- W2011902014 cites W2042136805 @default.
- W2011902014 cites W2056016757 @default.
- W2011902014 cites W2078502090 @default.
- W2011902014 cites W2078962987 @default.
- W2011902014 cites W2080771212 @default.
- W2011902014 cites W2084583793 @default.
- W2011902014 cites W2088558001 @default.
- W2011902014 cites W2121304759 @default.
- W2011902014 cites W2122840059 @default.
- W2011902014 cites W2125304835 @default.
- W2011902014 cites W2126411288 @default.
- W2011902014 cites W2127036303 @default.
- W2011902014 cites W2916152714 @default.
- W2011902014 doi "https://doi.org/10.1016/j.cej.2012.03.066" @default.
- W2011902014 hasPublicationYear "2012" @default.
- W2011902014 type Work @default.
- W2011902014 sameAs 2011902014 @default.
- W2011902014 citedByCount "112" @default.
- W2011902014 countsByYear W20119020142013 @default.
- W2011902014 countsByYear W20119020142014 @default.
- W2011902014 countsByYear W20119020142015 @default.
- W2011902014 countsByYear W20119020142016 @default.
- W2011902014 countsByYear W20119020142017 @default.
- W2011902014 countsByYear W20119020142018 @default.
- W2011902014 countsByYear W20119020142019 @default.
- W2011902014 countsByYear W20119020142020 @default.
- W2011902014 countsByYear W20119020142021 @default.
- W2011902014 countsByYear W20119020142022 @default.
- W2011902014 countsByYear W20119020142023 @default.
- W2011902014 crossrefType "journal-article" @default.
- W2011902014 hasAuthorship W2011902014A5050220948 @default.
- W2011902014 hasAuthorship W2011902014A5060565242 @default.
- W2011902014 hasConcept C121332964 @default.
- W2011902014 hasConcept C127413603 @default.
- W2011902014 hasConcept C148328677 @default.
- W2011902014 hasConcept C159985019 @default.
- W2011902014 hasConcept C161790260 @default.
- W2011902014 hasConcept C178790620 @default.
- W2011902014 hasConcept C18411161 @default.
- W2011902014 hasConcept C185592680 @default.
- W2011902014 hasConcept C192562407 @default.
- W2011902014 hasConcept C26771246 @default.
- W2011902014 hasConcept C39519442 @default.
- W2011902014 hasConcept C41625074 @default.
- W2011902014 hasConcept C42360764 @default.
- W2011902014 hasConcept C46275449 @default.
- W2011902014 hasConcept C55493867 @default.
- W2011902014 hasConcept C59061564 @default.
- W2011902014 hasConcept C60100273 @default.
- W2011902014 hasConcept C82776694 @default.
- W2011902014 hasConcept C86381522 @default.
- W2011902014 hasConcept C97355855 @default.
- W2011902014 hasConceptScore W2011902014C121332964 @default.
- W2011902014 hasConceptScore W2011902014C127413603 @default.
- W2011902014 hasConceptScore W2011902014C148328677 @default.
- W2011902014 hasConceptScore W2011902014C159985019 @default.
- W2011902014 hasConceptScore W2011902014C161790260 @default.
- W2011902014 hasConceptScore W2011902014C178790620 @default.
- W2011902014 hasConceptScore W2011902014C18411161 @default.
- W2011902014 hasConceptScore W2011902014C185592680 @default.
- W2011902014 hasConceptScore W2011902014C192562407 @default.
- W2011902014 hasConceptScore W2011902014C26771246 @default.
- W2011902014 hasConceptScore W2011902014C39519442 @default.
- W2011902014 hasConceptScore W2011902014C41625074 @default.
- W2011902014 hasConceptScore W2011902014C42360764 @default.
- W2011902014 hasConceptScore W2011902014C46275449 @default.
- W2011902014 hasConceptScore W2011902014C55493867 @default.
- W2011902014 hasConceptScore W2011902014C59061564 @default.
- W2011902014 hasConceptScore W2011902014C60100273 @default.
- W2011902014 hasConceptScore W2011902014C82776694 @default.
- W2011902014 hasConceptScore W2011902014C86381522 @default.
- W2011902014 hasConceptScore W2011902014C97355855 @default.
- W2011902014 hasLocation W20119020141 @default.
- W2011902014 hasOpenAccess W2011902014 @default.
- W2011902014 hasPrimaryLocation W20119020141 @default.
- W2011902014 hasRelatedWork W1492581229 @default.
- W2011902014 hasRelatedWork W1566772123 @default.
- W2011902014 hasRelatedWork W2001919608 @default.
- W2011902014 hasRelatedWork W2024199593 @default.
- W2011902014 hasRelatedWork W2076901849 @default.