Matches in SemOpenAlex for { <https://semopenalex.org/work/W2011963573> ?p ?o ?g. }
- W2011963573 endingPage "149" @default.
- W2011963573 startingPage "139" @default.
- W2011963573 abstract "A global carbon–strontium coupled model over the Cenozoic is presented. The carbon cycle includes improvements on the uplift parameter in the Himalayan and Tibetan regions and the hydrothermal flux at back-arc basins from the carbon cycle model of Kashiwagi and Shikazono [Kashiwagi, H., Shikazono, N., 2003. Climate change during the Cenozoic inferred from global carbon cycle model including igneous and hydrothermal activities. Palaeogeography, Palaeoclimatology, Palaeoecology 199, 167–185]. The strontium cycle incorporates groundwater flux, basalt weathering, and Himalayan weathering. The model result indicates that the Paleocene to the late Eocene is characterized by decreasing strontium weathering and gradually increasing isotopic value (87Sr/86Sr), which is a result of the decrease in radiogenic silicate weathering and less radiogenic carbonate weathering caused by decline of the atmospheric temperature. Since then, the 87Sr/86Sr continuously increases towards the present. The increase in the Sr isotopic value from 40 Ma to 35 Ma is attributed to appearance of hydrothermal calcite in the Himalayan region. The increasing patterns of the 87Sr/86Sr from that time to the early Miocene roughly correspond to the continental glaciations in high latitudes such as those at the Eocene/Oligocene boundary, in the middle Miocene and at the Oligocene/Miocene boundary. Radiogenic weathering accelerated by physical erosion due to glaciations and the subsequent deglaciations as suggested by previous studies might be related. However, there are time lags between the 87Sr/86Sr and δ18O signals, which might have resulted from long residence time of Sr in the ocean. Reactivity of minerals under such low temperature and other climatic conditions is still unclear. More supportive works to assure a favourable environment for sufficient weathering and to constrain the timings and amplitudes of the glacial events during these periods would be necessary. The presented model shows the increase in the Sr weathering flux since the late Miocene, which would have induced the elevation of seawater 87Sr/86Sr whereas the evolution of the glaciations partially might have contributed to that. Some disagreement between other studies and the model is confirmed. The evaluation of the palaeo sealevel variation and carbonate compensation depth might produce the uncertainties in the estimate of weathering flux. Moreover, the basaltic province, through which several major rivers drain, and discrimination of these rivers and the Ganges–Brahmaputra–Indus, might be important for the strontium cycle because these rivers are likely to be influenced by the radiogenic upstream area and non-radiogenic downstream province, whose 87Sr/86Sr would have changed considerably during the Cenozoic. Despite these uncertainties, it is clear that we can not attribute the increase in the seawater 87Sr/86Sr values during the Cenozoic entirely to the influence of the Himalayan uplift, and the seawater 87Sr/86Sr variation does not serve as a proxy for silicate weathering rate and atmospheric CO2 consumption rate of atmospheric CO2." @default.
- W2011963573 created "2016-06-24" @default.
- W2011963573 creator A5057007152 @default.
- W2011963573 creator A5076644356 @default.
- W2011963573 creator A5088785132 @default.
- W2011963573 date "2008-12-01" @default.
- W2011963573 modified "2023-09-29" @default.
- W2011963573 title "Relationship between weathering, mountain uplift, and climate during the Cenozoic as deduced from the global carbon–strontium cycle model" @default.
- W2011963573 cites W1531643369 @default.
- W2011963573 cites W1944708996 @default.
- W2011963573 cites W1965040948 @default.
- W2011963573 cites W1965499764 @default.
- W2011963573 cites W1965840594 @default.
- W2011963573 cites W1968175026 @default.
- W2011963573 cites W1969955164 @default.
- W2011963573 cites W1972484192 @default.
- W2011963573 cites W1974691910 @default.
- W2011963573 cites W1974904677 @default.
- W2011963573 cites W1976620802 @default.
- W2011963573 cites W1981675265 @default.
- W2011963573 cites W1982444849 @default.
- W2011963573 cites W1983891732 @default.
- W2011963573 cites W1983977322 @default.
- W2011963573 cites W1984357207 @default.
- W2011963573 cites W1986043507 @default.
- W2011963573 cites W1987278699 @default.
- W2011963573 cites W1991318054 @default.
- W2011963573 cites W1991405927 @default.
- W2011963573 cites W1993280670 @default.
- W2011963573 cites W1996830410 @default.
- W2011963573 cites W1997020239 @default.
- W2011963573 cites W1997698506 @default.
- W2011963573 cites W1997935814 @default.
- W2011963573 cites W1999208777 @default.
- W2011963573 cites W1999341427 @default.
- W2011963573 cites W1999809323 @default.
- W2011963573 cites W1999898881 @default.
- W2011963573 cites W1999924690 @default.
- W2011963573 cites W2000179986 @default.
- W2011963573 cites W2000911882 @default.
- W2011963573 cites W2002606625 @default.
- W2011963573 cites W2005550073 @default.
- W2011963573 cites W2008587428 @default.
- W2011963573 cites W2010325408 @default.
- W2011963573 cites W2010834477 @default.
- W2011963573 cites W2011834231 @default.
- W2011963573 cites W2014949335 @default.
- W2011963573 cites W2017794690 @default.
- W2011963573 cites W2021498615 @default.
- W2011963573 cites W2028217507 @default.
- W2011963573 cites W2029664473 @default.
- W2011963573 cites W2031763456 @default.
- W2011963573 cites W2031763464 @default.
- W2011963573 cites W2036348046 @default.
- W2011963573 cites W2038230792 @default.
- W2011963573 cites W2039184285 @default.
- W2011963573 cites W2039991526 @default.
- W2011963573 cites W2050953969 @default.
- W2011963573 cites W2054164658 @default.
- W2011963573 cites W2054398165 @default.
- W2011963573 cites W2055140185 @default.
- W2011963573 cites W2056667205 @default.
- W2011963573 cites W2066793094 @default.
- W2011963573 cites W2068171707 @default.
- W2011963573 cites W2071345686 @default.
- W2011963573 cites W2072679163 @default.
- W2011963573 cites W2074607402 @default.
- W2011963573 cites W2081631371 @default.
- W2011963573 cites W2086613667 @default.
- W2011963573 cites W2088841279 @default.
- W2011963573 cites W2090361403 @default.
- W2011963573 cites W2090703036 @default.
- W2011963573 cites W2093114941 @default.
- W2011963573 cites W2103777705 @default.
- W2011963573 cites W2106670836 @default.
- W2011963573 cites W2107127140 @default.
- W2011963573 cites W2115575384 @default.
- W2011963573 cites W2118081486 @default.
- W2011963573 cites W2120995521 @default.
- W2011963573 cites W2133623351 @default.
- W2011963573 cites W2140110924 @default.
- W2011963573 cites W2147508025 @default.
- W2011963573 cites W2157392485 @default.
- W2011963573 cites W2160531441 @default.
- W2011963573 cites W2162297373 @default.
- W2011963573 cites W2167689533 @default.
- W2011963573 cites W2320531779 @default.
- W2011963573 cites W2328366459 @default.
- W2011963573 cites W4245300726 @default.
- W2011963573 cites W4253764145 @default.
- W2011963573 doi "https://doi.org/10.1016/j.palaeo.2008.09.005" @default.
- W2011963573 hasPublicationYear "2008" @default.
- W2011963573 type Work @default.
- W2011963573 sameAs 2011963573 @default.
- W2011963573 citedByCount "24" @default.
- W2011963573 countsByYear W20119635732012 @default.
- W2011963573 countsByYear W20119635732013 @default.
- W2011963573 countsByYear W20119635732014 @default.