Matches in SemOpenAlex for { <https://semopenalex.org/work/W2012004019> ?p ?o ?g. }
- W2012004019 endingPage "1313" @default.
- W2012004019 startingPage "1306" @default.
- W2012004019 abstract "We generalize a Bernstein-type result due to Albujer and Alías, for maximal surfaces in a curved Lorentzian product 3-manifold of the form Σ1×R, to higher dimension and codimension. We consider M a complete spacelike graphic submanifold with parallel mean curvature, defined by a map f:Σ1→Σ2 between two Riemannian manifolds (Σ1m,g1) and (Σ2n,g2) of sectional curvatures K1 and K2, respectively. We take on Σ1×Σ2 the pseudo-Riemannian product metric g1−g2. Under the curvature conditions, Ricci1≥0 and K1≥K2, we prove that, if the second fundamental form of M satisfies an integrability condition, then M is totally geodesic, and it is a slice if Ricci1(p)>0 at some point. For bounded K1, K2 and hyperbolic angle θ, we conclude that M must be maximal. If M is a maximal surface and K1≥K2+, we show M is totally geodesic with no need for further assumptions. Furthermore, M is a slice if at some point p∈Σ1, K1(p)>0, and if Σ1 is flat and K2<0 at some point f(p), then the image of f lies on a geodesic of Σ2." @default.
- W2012004019 created "2016-06-24" @default.
- W2012004019 creator A5021086248 @default.
- W2012004019 creator A5090479838 @default.
- W2012004019 date "2009-09-01" @default.
- W2012004019 modified "2023-09-24" @default.
- W2012004019 title "Graphic Bernstein results in curved pseudo-Riemannian manifolds" @default.
- W2012004019 cites W142313890 @default.
- W2012004019 cites W1551284300 @default.
- W2012004019 cites W1567771969 @default.
- W2012004019 cites W1604759550 @default.
- W2012004019 cites W1865488894 @default.
- W2012004019 cites W1963700844 @default.
- W2012004019 cites W1969056445 @default.
- W2012004019 cites W1970136394 @default.
- W2012004019 cites W1987206679 @default.
- W2012004019 cites W2002206527 @default.
- W2012004019 cites W2004320596 @default.
- W2012004019 cites W2009483773 @default.
- W2012004019 cites W2029512021 @default.
- W2012004019 cites W2031324488 @default.
- W2012004019 cites W2036144354 @default.
- W2012004019 cites W2047359073 @default.
- W2012004019 cites W2048144209 @default.
- W2012004019 cites W2056847409 @default.
- W2012004019 cites W2058590426 @default.
- W2012004019 cites W2060893519 @default.
- W2012004019 cites W2073421794 @default.
- W2012004019 cites W2074093148 @default.
- W2012004019 cites W2080513630 @default.
- W2012004019 cites W2164499796 @default.
- W2012004019 cites W3134505637 @default.
- W2012004019 cites W3216478359 @default.
- W2012004019 doi "https://doi.org/10.1016/j.geomphys.2009.06.011" @default.
- W2012004019 hasPublicationYear "2009" @default.
- W2012004019 type Work @default.
- W2012004019 sameAs 2012004019 @default.
- W2012004019 citedByCount "17" @default.
- W2012004019 countsByYear W20120040192012 @default.
- W2012004019 countsByYear W20120040192013 @default.
- W2012004019 countsByYear W20120040192015 @default.
- W2012004019 countsByYear W20120040192016 @default.
- W2012004019 countsByYear W20120040192017 @default.
- W2012004019 countsByYear W20120040192018 @default.
- W2012004019 countsByYear W20120040192020 @default.
- W2012004019 crossrefType "journal-article" @default.
- W2012004019 hasAuthorship W2012004019A5021086248 @default.
- W2012004019 hasAuthorship W2012004019A5090479838 @default.
- W2012004019 hasBestOaLocation W20120040192 @default.
- W2012004019 hasConcept C102224218 @default.
- W2012004019 hasConcept C119830904 @default.
- W2012004019 hasConcept C12520029 @default.
- W2012004019 hasConcept C127413603 @default.
- W2012004019 hasConcept C134306372 @default.
- W2012004019 hasConcept C151300846 @default.
- W2012004019 hasConcept C162269530 @default.
- W2012004019 hasConcept C162324750 @default.
- W2012004019 hasConcept C165818556 @default.
- W2012004019 hasConcept C175017881 @default.
- W2012004019 hasConcept C176217482 @default.
- W2012004019 hasConcept C195065555 @default.
- W2012004019 hasConcept C202444582 @default.
- W2012004019 hasConcept C21547014 @default.
- W2012004019 hasConcept C2524010 @default.
- W2012004019 hasConcept C2779593128 @default.
- W2012004019 hasConcept C28719098 @default.
- W2012004019 hasConcept C33676613 @default.
- W2012004019 hasConcept C33923547 @default.
- W2012004019 hasConcept C34388435 @default.
- W2012004019 hasConcept C42448751 @default.
- W2012004019 hasConcept C529865628 @default.
- W2012004019 hasConcept C78519656 @default.
- W2012004019 hasConcept C83979697 @default.
- W2012004019 hasConcept C90673727 @default.
- W2012004019 hasConceptScore W2012004019C102224218 @default.
- W2012004019 hasConceptScore W2012004019C119830904 @default.
- W2012004019 hasConceptScore W2012004019C12520029 @default.
- W2012004019 hasConceptScore W2012004019C127413603 @default.
- W2012004019 hasConceptScore W2012004019C134306372 @default.
- W2012004019 hasConceptScore W2012004019C151300846 @default.
- W2012004019 hasConceptScore W2012004019C162269530 @default.
- W2012004019 hasConceptScore W2012004019C162324750 @default.
- W2012004019 hasConceptScore W2012004019C165818556 @default.
- W2012004019 hasConceptScore W2012004019C175017881 @default.
- W2012004019 hasConceptScore W2012004019C176217482 @default.
- W2012004019 hasConceptScore W2012004019C195065555 @default.
- W2012004019 hasConceptScore W2012004019C202444582 @default.
- W2012004019 hasConceptScore W2012004019C21547014 @default.
- W2012004019 hasConceptScore W2012004019C2524010 @default.
- W2012004019 hasConceptScore W2012004019C2779593128 @default.
- W2012004019 hasConceptScore W2012004019C28719098 @default.
- W2012004019 hasConceptScore W2012004019C33676613 @default.
- W2012004019 hasConceptScore W2012004019C33923547 @default.
- W2012004019 hasConceptScore W2012004019C34388435 @default.
- W2012004019 hasConceptScore W2012004019C42448751 @default.
- W2012004019 hasConceptScore W2012004019C529865628 @default.
- W2012004019 hasConceptScore W2012004019C78519656 @default.
- W2012004019 hasConceptScore W2012004019C83979697 @default.