Matches in SemOpenAlex for { <https://semopenalex.org/work/W2012023697> ?p ?o ?g. }
- W2012023697 endingPage "21777" @default.
- W2012023697 startingPage "21753" @default.
- W2012023697 abstract "We present a new method for calculating the major element compositions of primary melts parental to mid‐ocean ridge basalt (MORB). This model is based on the experimental data of Jaques and Green (1980), Falloon et al. (1988), and Falloon and Green (1987, 1988) which are ideal for this purpose. Our method is empirical and employs solid‐liquid partition coefficients (D i ) from the experiments. We empirically determine D i = ƒ(P,F) and use this to calculate melt compositions produced by decompression‐induced melting along an adiabat (column melting). Results indicate that most MORBs can be generated by 10–20% partial melting at initial pressures (P 0 ) of 12–21 kbar. Our primary MORB melts have MgO = 10–12 wt %. We fractionate these at low pressure to an MgO content of 8.0 wt % in order to interpret natural MORB liquids. This model allows us to calculate P o , P ƒ , T o , T ƒ , and F for natural MORB melts. We apply the model to interpret MORB compositions and mantle upwelling patterns beneath a fast ridge (East Pacific Rise (EPR)8°N to 14°N), a slow ridge (mid‐Atlantic Ridge (MAR) at 26°S), and seamounts near the EPR (Lament seamount chain). We find mantle temperature differences of up to 50°–60°C over distances of 30–50 km both across axis and along axis at the EPR. We propose that these are due to upward mantle flow in a weakly conductive (versus adiabatic) temperature gradient. We suggest that the EPR is fed by a wide (−100 km) zone of upwelling due to plate separation but has a central core of faster buoyant flow. An along‐axis thermal dome between the Siqueiros transform and the 11°45′ Overlapping Spreading center (OSC) may represent such an upwelling; however, in general there is a poor correlation between mantle temperature, topography, and the segmentation pattern at the EPR. For the Lament seamounts we find regular across‐axis changes in P o and F suggesting that the melt zone pinches out off axis. This observation supports the idea that the EPR is fed by a broad upwelling which diminishes in vigor off axis. In contrast with the EPR axis, mantle temperature correlates well with topography at the MAR, and there is less melting under offsets. The data are consistent with weaker upwelling under offsets and an adiabatic temperature gradient in the sub axial mantle away from offsets. The MAR at 26°S exhibits the so‐called local trend of Klein and Langmuir (1989). Our model indicates that the local trend cannot be due solely to intracolumn melting processes. The local trend seems to be genetically associated with slow‐spreading ridges, and we suggest it is due to melting of multiple individual domains that differ in initial and final melting pressure within segments fed by buoyant focused mantle flow." @default.
- W2012023697 created "2016-06-24" @default.
- W2012023697 creator A5047489413 @default.
- W2012023697 creator A5086247853 @default.
- W2012023697 date "1991-12-10" @default.
- W2012023697 modified "2023-10-16" @default.
- W2012023697 title "An empirical method for calculating melt compositions produced beneath mid‐ocean ridges: Application for axis and off‐axis (seamounts) melting" @default.
- W2012023697 cites W196073831 @default.
- W2012023697 cites W1965017653 @default.
- W2012023697 cites W1966133457 @default.
- W2012023697 cites W1970300220 @default.
- W2012023697 cites W1971678159 @default.
- W2012023697 cites W1973811090 @default.
- W2012023697 cites W1976788350 @default.
- W2012023697 cites W1977660954 @default.
- W2012023697 cites W1982048660 @default.
- W2012023697 cites W1983032499 @default.
- W2012023697 cites W1987243508 @default.
- W2012023697 cites W1987723867 @default.
- W2012023697 cites W1990740187 @default.
- W2012023697 cites W1990746271 @default.
- W2012023697 cites W1990814837 @default.
- W2012023697 cites W1991185897 @default.
- W2012023697 cites W1991446948 @default.
- W2012023697 cites W1992535721 @default.
- W2012023697 cites W1993079962 @default.
- W2012023697 cites W1996154638 @default.
- W2012023697 cites W1997268075 @default.
- W2012023697 cites W1999874540 @default.
- W2012023697 cites W2000669040 @default.
- W2012023697 cites W2000682950 @default.
- W2012023697 cites W2003747250 @default.
- W2012023697 cites W2003764258 @default.
- W2012023697 cites W2006529541 @default.
- W2012023697 cites W2006783184 @default.
- W2012023697 cites W2010749247 @default.
- W2012023697 cites W2016701904 @default.
- W2012023697 cites W2018337696 @default.
- W2012023697 cites W2022974215 @default.
- W2012023697 cites W2024137847 @default.
- W2012023697 cites W2025654388 @default.
- W2012023697 cites W2027862110 @default.
- W2012023697 cites W2028627409 @default.
- W2012023697 cites W2029944417 @default.
- W2012023697 cites W2033850451 @default.
- W2012023697 cites W2036144839 @default.
- W2012023697 cites W2036181773 @default.
- W2012023697 cites W2038252743 @default.
- W2012023697 cites W2039195509 @default.
- W2012023697 cites W2041169676 @default.
- W2012023697 cites W2048824368 @default.
- W2012023697 cites W2055051310 @default.
- W2012023697 cites W2063205632 @default.
- W2012023697 cites W2065276394 @default.
- W2012023697 cites W2066139010 @default.
- W2012023697 cites W2067151194 @default.
- W2012023697 cites W2068584896 @default.
- W2012023697 cites W2069622978 @default.
- W2012023697 cites W2072771716 @default.
- W2012023697 cites W2072923103 @default.
- W2012023697 cites W2073635055 @default.
- W2012023697 cites W2074072796 @default.
- W2012023697 cites W2082018316 @default.
- W2012023697 cites W2089995036 @default.
- W2012023697 cites W2090330779 @default.
- W2012023697 cites W2091178948 @default.
- W2012023697 cites W2107283728 @default.
- W2012023697 cites W2111397264 @default.
- W2012023697 cites W2120027408 @default.
- W2012023697 cites W2125105073 @default.
- W2012023697 cites W2127063125 @default.
- W2012023697 cites W2152583741 @default.
- W2012023697 cites W2164242909 @default.
- W2012023697 cites W2315818844 @default.
- W2012023697 cites W2316199347 @default.
- W2012023697 cites W2324854222 @default.
- W2012023697 cites W2987948957 @default.
- W2012023697 cites W642264229 @default.
- W2012023697 doi "https://doi.org/10.1029/91jb01933" @default.
- W2012023697 hasPublicationYear "1991" @default.
- W2012023697 type Work @default.
- W2012023697 sameAs 2012023697 @default.
- W2012023697 citedByCount "236" @default.
- W2012023697 countsByYear W20120236972012 @default.
- W2012023697 countsByYear W20120236972013 @default.
- W2012023697 countsByYear W20120236972014 @default.
- W2012023697 countsByYear W20120236972015 @default.
- W2012023697 countsByYear W20120236972016 @default.
- W2012023697 countsByYear W20120236972017 @default.
- W2012023697 countsByYear W20120236972018 @default.
- W2012023697 countsByYear W20120236972019 @default.
- W2012023697 countsByYear W20120236972020 @default.
- W2012023697 countsByYear W20120236972021 @default.
- W2012023697 countsByYear W20120236972022 @default.
- W2012023697 countsByYear W20120236972023 @default.
- W2012023697 crossrefType "journal-article" @default.
- W2012023697 hasAuthorship W2012023697A5047489413 @default.
- W2012023697 hasAuthorship W2012023697A5086247853 @default.