Matches in SemOpenAlex for { <https://semopenalex.org/work/W2012026692> ?p ?o ?g. }
- W2012026692 endingPage "285" @default.
- W2012026692 startingPage "279" @default.
- W2012026692 abstract "In this study, we examined the effects on freezing of 26 kinds of flavonoid compounds, which were randomly selected as compounds with structures similar to those of flavonoid compounds existing in deep supercooling xylem parenchyma cells (XPCs) in trees, in solutions containing different kinds of ice nucleators, including the ice nucleation bacterium (INB) Erwinia ananas, INB Xanthomonas campestris, silver iodide, phloroglucinol and unidentified airborne impurities in buffered Milli-Q water (BMQW). Cumulative freezing spectra were obtained in each solution by cooling 2 μL droplets at 0.2 °C/min by a droplet freezing assay. Freezing temperature of 50% droplets (FT50) was obtained from each spectra in a separate analysis with more than 20 droplets and mean FT50 were obtained from more than five separate analyses using more than 100 droplets in total in each flavonoid. Supercooling-promoting activities (SCA) or ice nucleation-enhancing activities (INA) of these flavonoids were determined by the difference in FT50 between control solutions without flavonoids and experimental solutions with flavonoids. In mean values, most of the compounds examined exhibited SCA in solutions containing the INB E. ananas, INB X. campestris, silver iodide, and phloroglucinol although the magnitudes of their activities were different depending on the ice nucleator. In solutions containing the INB E. ananas, 10 compounds exhibited SCAs with significant differences (p < 0.05) in the range of 1.4–4.2 °C. In solutions containing silver iodide, 23 compounds exhibited SCAs with significant differences in the range of 2.0–7.1 °C. In solutions containing phloroglucinol, six compounds exhibited SCAs with significant differences in the range of 2.4–3.5 °C. In solutions containing the INB X. campestris, only three compounds exhibited SCAs with significant differences in the range of 0.9–2.3 °C. In solutions containing unidentified airborne impurities (BMQW alone), on the other hand, many compounds exhibited INA rather than SCA. In mean values, only four compounds exhibited SCAs in the range of 2.4–3.2 °C (no compounds with significant difference at p < 0.05), whereas 21 compounds exhibited INAs in the range of 0.1–12.3 °C (eight compounds with significant difference). It was also shown by an emulsion freezing assay that most flavonoid glycosides examined did not affect homogeneous ice nucleation temperatures, except for a few compounds that become ice nucleators in BMQW alone. These results suggest that most flavonoid compounds affect freezing temperatures by interaction with unidentified ice nucleators in BMQW as examined by a droplet freezing assay. The results of our previous and present studies indicate that flavonoid compounds have very complex effects to regulate freezing of water." @default.
- W2012026692 created "2016-06-24" @default.
- W2012026692 creator A5031306837 @default.
- W2012026692 creator A5042054278 @default.
- W2012026692 creator A5049157239 @default.
- W2012026692 creator A5063096795 @default.
- W2012026692 creator A5071247742 @default.
- W2012026692 creator A5080039080 @default.
- W2012026692 creator A5084668831 @default.
- W2012026692 creator A5090435001 @default.
- W2012026692 date "2012-06-01" @default.
- W2012026692 modified "2023-10-18" @default.
- W2012026692 title "Freezing activities of flavonoids in solutions containing different ice nucleators" @default.
- W2012026692 cites W1965815393 @default.
- W2012026692 cites W1976545537 @default.
- W2012026692 cites W1977077602 @default.
- W2012026692 cites W1983889305 @default.
- W2012026692 cites W1986687589 @default.
- W2012026692 cites W2000887514 @default.
- W2012026692 cites W2014898138 @default.
- W2012026692 cites W2036525133 @default.
- W2012026692 cites W2039726023 @default.
- W2012026692 cites W2040362290 @default.
- W2012026692 cites W2042664086 @default.
- W2012026692 cites W2051933674 @default.
- W2012026692 cites W2063472936 @default.
- W2012026692 cites W2073233042 @default.
- W2012026692 cites W2076115847 @default.
- W2012026692 cites W2083934680 @default.
- W2012026692 cites W2092578748 @default.
- W2012026692 cites W2095453615 @default.
- W2012026692 cites W2106665887 @default.
- W2012026692 cites W2113853435 @default.
- W2012026692 cites W2121111097 @default.
- W2012026692 cites W2148378265 @default.
- W2012026692 cites W2328926117 @default.
- W2012026692 doi "https://doi.org/10.1016/j.cryobiol.2012.02.012" @default.
- W2012026692 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/22406212" @default.
- W2012026692 hasPublicationYear "2012" @default.
- W2012026692 type Work @default.
- W2012026692 sameAs 2012026692 @default.
- W2012026692 citedByCount "15" @default.
- W2012026692 countsByYear W20120266922013 @default.
- W2012026692 countsByYear W20120266922014 @default.
- W2012026692 countsByYear W20120266922016 @default.
- W2012026692 countsByYear W20120266922017 @default.
- W2012026692 countsByYear W20120266922018 @default.
- W2012026692 countsByYear W20120266922020 @default.
- W2012026692 countsByYear W20120266922021 @default.
- W2012026692 countsByYear W20120266922023 @default.
- W2012026692 crossrefType "journal-article" @default.
- W2012026692 hasAuthorship W2012026692A5031306837 @default.
- W2012026692 hasAuthorship W2012026692A5042054278 @default.
- W2012026692 hasAuthorship W2012026692A5049157239 @default.
- W2012026692 hasAuthorship W2012026692A5063096795 @default.
- W2012026692 hasAuthorship W2012026692A5071247742 @default.
- W2012026692 hasAuthorship W2012026692A5080039080 @default.
- W2012026692 hasAuthorship W2012026692A5084668831 @default.
- W2012026692 hasAuthorship W2012026692A5090435001 @default.
- W2012026692 hasConcept C112964491 @default.
- W2012026692 hasConcept C121332964 @default.
- W2012026692 hasConcept C122409099 @default.
- W2012026692 hasConcept C178790620 @default.
- W2012026692 hasConcept C181199279 @default.
- W2012026692 hasConcept C185592680 @default.
- W2012026692 hasConcept C22802001 @default.
- W2012026692 hasConcept C2776460251 @default.
- W2012026692 hasConcept C2776613168 @default.
- W2012026692 hasConcept C2778004101 @default.
- W2012026692 hasConcept C2778626014 @default.
- W2012026692 hasConcept C2779054382 @default.
- W2012026692 hasConcept C2779227376 @default.
- W2012026692 hasConcept C2781074174 @default.
- W2012026692 hasConcept C43617362 @default.
- W2012026692 hasConcept C49799701 @default.
- W2012026692 hasConcept C59822182 @default.
- W2012026692 hasConcept C61048295 @default.
- W2012026692 hasConcept C86803240 @default.
- W2012026692 hasConcept C97355855 @default.
- W2012026692 hasConceptScore W2012026692C112964491 @default.
- W2012026692 hasConceptScore W2012026692C121332964 @default.
- W2012026692 hasConceptScore W2012026692C122409099 @default.
- W2012026692 hasConceptScore W2012026692C178790620 @default.
- W2012026692 hasConceptScore W2012026692C181199279 @default.
- W2012026692 hasConceptScore W2012026692C185592680 @default.
- W2012026692 hasConceptScore W2012026692C22802001 @default.
- W2012026692 hasConceptScore W2012026692C2776460251 @default.
- W2012026692 hasConceptScore W2012026692C2776613168 @default.
- W2012026692 hasConceptScore W2012026692C2778004101 @default.
- W2012026692 hasConceptScore W2012026692C2778626014 @default.
- W2012026692 hasConceptScore W2012026692C2779054382 @default.
- W2012026692 hasConceptScore W2012026692C2779227376 @default.
- W2012026692 hasConceptScore W2012026692C2781074174 @default.
- W2012026692 hasConceptScore W2012026692C43617362 @default.
- W2012026692 hasConceptScore W2012026692C49799701 @default.
- W2012026692 hasConceptScore W2012026692C59822182 @default.
- W2012026692 hasConceptScore W2012026692C61048295 @default.
- W2012026692 hasConceptScore W2012026692C86803240 @default.