Matches in SemOpenAlex for { <https://semopenalex.org/work/W2012029574> ?p ?o ?g. }
- W2012029574 endingPage "1763" @default.
- W2012029574 startingPage "1743" @default.
- W2012029574 abstract "A characteristic functional approach is suggested for L'evy diffusion in disordered systems with external force fields. We study the overdamped motion of an ensemble of independent particles and assume that the force acting upon one particle is made up of two additive components: a linear term generated by a harmonic potential and a second term generated by the interaction with the disordered system. The stochastic properties of the second term are evaluated by using Huber's approach to complex relaxation [Phys. Rev. B 31, 6070 (1985)]. We assume that the interaction between a moving particle and the environment can be expressed by the contribution of a large number of relaxation channels, each channel having a very small probability of being open and obeying Poisson statistics. Two types of processes are investigated: (a) L'evy diffusion with static disorder for which the fluctuations of the random force are frozen and last forever and (b) diffusion with strong dynamic disorder and independent L'evy fluctuations (L'evy white noise). In both cases we show that the probability distribution of the position of a diffusing particle tends towards a stationary nonequilibrium form. The characteristic functional of concentration fluctuations is evaluated in both cases by using the theory of random point processes. For large times the fluctuations of the concentration field are stationary and the corresponding probability density functional can be evaluated analytically. In this limit the fluctuations depend on the distribution of the total number of particles but are independent of the initial positions of the particles. We show that the logarithm of the stationary probability functional plays the role of a nonequilibrium thermodynamic potential, which has a structure similar to the Helmholtz free energy in equilibrium thermodynamics: it is made up of the sum of an energetic component, depending on the external mechanical potential, and of an entropic component, depending on the concentration field. We show that the conditions for the existence and stability of the nonequilibrium steady state, which emerges for large times, can be expressed in terms of the stochastic potential. For L'evy white noise the average concentration field can be expressed as the solution of a fractional Fokker-Planck equation. We show that the stochastic potential is a Lyapunov function of the fractional Fokker-Planck equation, which ensures that all transient solutions for the average concentration field tend towards a unique stationary form." @default.
- W2012029574 created "2016-06-24" @default.
- W2012029574 creator A5064373634 @default.
- W2012029574 creator A5079073261 @default.
- W2012029574 creator A5089206820 @default.
- W2012029574 date "2000-08-01" @default.
- W2012029574 modified "2023-09-27" @default.
- W2012029574 title "Lévy diffusion in a force field, Huber relaxation kinetics, and nonequilibrium thermodynamics:Htheorem for enhanced diffusion with Lévy white noise" @default.
- W2012029574 cites W1964408602 @default.
- W2012029574 cites W1967200406 @default.
- W2012029574 cites W1972432457 @default.
- W2012029574 cites W1975174239 @default.
- W2012029574 cites W1986257969 @default.
- W2012029574 cites W1986339815 @default.
- W2012029574 cites W1990433225 @default.
- W2012029574 cites W1993550213 @default.
- W2012029574 cites W1995273374 @default.
- W2012029574 cites W2001241778 @default.
- W2012029574 cites W2004051164 @default.
- W2012029574 cites W2005300419 @default.
- W2012029574 cites W2008500933 @default.
- W2012029574 cites W2013812365 @default.
- W2012029574 cites W2016437223 @default.
- W2012029574 cites W2018674686 @default.
- W2012029574 cites W2020607247 @default.
- W2012029574 cites W2020713941 @default.
- W2012029574 cites W2039749153 @default.
- W2012029574 cites W2040194422 @default.
- W2012029574 cites W2044645092 @default.
- W2012029574 cites W2045514685 @default.
- W2012029574 cites W2052486785 @default.
- W2012029574 cites W2052766121 @default.
- W2012029574 cites W2055119044 @default.
- W2012029574 cites W2055922934 @default.
- W2012029574 cites W2059206725 @default.
- W2012029574 cites W2062067039 @default.
- W2012029574 cites W2062517214 @default.
- W2012029574 cites W2064574195 @default.
- W2012029574 cites W2070555564 @default.
- W2012029574 cites W2071405388 @default.
- W2012029574 cites W2087072375 @default.
- W2012029574 cites W2092112272 @default.
- W2012029574 cites W2093067381 @default.
- W2012029574 cites W2094796475 @default.
- W2012029574 cites W2101085080 @default.
- W2012029574 cites W2125684461 @default.
- W2012029574 cites W2916944044 @default.
- W2012029574 cites W4211196861 @default.
- W2012029574 doi "https://doi.org/10.1103/physreve.62.1743" @default.
- W2012029574 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/11088636" @default.
- W2012029574 hasPublicationYear "2000" @default.
- W2012029574 type Work @default.
- W2012029574 sameAs 2012029574 @default.
- W2012029574 citedByCount "14" @default.
- W2012029574 countsByYear W20120295742014 @default.
- W2012029574 countsByYear W20120295742016 @default.
- W2012029574 countsByYear W20120295742018 @default.
- W2012029574 crossrefType "journal-article" @default.
- W2012029574 hasAuthorship W2012029574A5064373634 @default.
- W2012029574 hasAuthorship W2012029574A5079073261 @default.
- W2012029574 hasAuthorship W2012029574A5089206820 @default.
- W2012029574 hasConcept C105795698 @default.
- W2012029574 hasConcept C112633086 @default.
- W2012029574 hasConcept C115961682 @default.
- W2012029574 hasConcept C121332964 @default.
- W2012029574 hasConcept C121864883 @default.
- W2012029574 hasConcept C149441793 @default.
- W2012029574 hasConcept C154945302 @default.
- W2012029574 hasConcept C15744967 @default.
- W2012029574 hasConcept C164602753 @default.
- W2012029574 hasConcept C2776029896 @default.
- W2012029574 hasConcept C3017618536 @default.
- W2012029574 hasConcept C33923547 @default.
- W2012029574 hasConcept C41008148 @default.
- W2012029574 hasConcept C56739046 @default.
- W2012029574 hasConcept C69357855 @default.
- W2012029574 hasConcept C74650414 @default.
- W2012029574 hasConcept C74859849 @default.
- W2012029574 hasConcept C77805123 @default.
- W2012029574 hasConcept C97355855 @default.
- W2012029574 hasConcept C99498987 @default.
- W2012029574 hasConceptScore W2012029574C105795698 @default.
- W2012029574 hasConceptScore W2012029574C112633086 @default.
- W2012029574 hasConceptScore W2012029574C115961682 @default.
- W2012029574 hasConceptScore W2012029574C121332964 @default.
- W2012029574 hasConceptScore W2012029574C121864883 @default.
- W2012029574 hasConceptScore W2012029574C149441793 @default.
- W2012029574 hasConceptScore W2012029574C154945302 @default.
- W2012029574 hasConceptScore W2012029574C15744967 @default.
- W2012029574 hasConceptScore W2012029574C164602753 @default.
- W2012029574 hasConceptScore W2012029574C2776029896 @default.
- W2012029574 hasConceptScore W2012029574C3017618536 @default.
- W2012029574 hasConceptScore W2012029574C33923547 @default.
- W2012029574 hasConceptScore W2012029574C41008148 @default.
- W2012029574 hasConceptScore W2012029574C56739046 @default.
- W2012029574 hasConceptScore W2012029574C69357855 @default.
- W2012029574 hasConceptScore W2012029574C74650414 @default.
- W2012029574 hasConceptScore W2012029574C74859849 @default.