Matches in SemOpenAlex for { <https://semopenalex.org/work/W2012032885> ?p ?o ?g. }
- W2012032885 endingPage "B42" @default.
- W2012032885 startingPage "B25" @default.
- W2012032885 abstract "An important issue in the development of higher-order methods for incompressible flow is how they perform when the flow is turbulent. A useful diagnostic of a method for turbulent flow is the minimum resolution that is required to adequately resolve the turbulent energy cascade at a given Reynolds number. In this paper, we present careful numerical experiments to assess the utility of higher-order numerical methods based on this metric. We first introduce a numerical method for the incompressible Navier--Stokes equations based on fourth-order discretizations in both space and time. The method is based on an auxiliary variable formulation and combines fourth-order finite volume differencing with a semi-implicit spectral deferred correction temporal integration scheme. We also introduce, for comparison purposes, versions based on second-order spatial and/or temporal discretizations. We demonstrate that for smooth problems, each of the methods exhibits the expected order of convergence in time and space. We next examine the behavior of these schemes on prototypical turbulent flows; in particular, we consider homogeneous isotropic turbulence in which long wavelength forcing is used to maintain the overall level of turbulent intensity. We provide comparisons of the fourth-order method with the comparable second-order method as well as with a second-order semi-implicit projection method based on a shock-capturing discretization. The results demonstrate that, for a given Reynolds number, the fourth-order scheme leads to dramatic reduction in the required resolution relative to either of the second-order schemes. In addition, the resolution requirements appear to be reasonably well predicted by scaling relationships based on dimensional analysis, providing a characterization of resolution requirements as a function of Reynolds number." @default.
- W2012032885 created "2016-06-24" @default.
- W2012032885 creator A5004099733 @default.
- W2012032885 creator A5058300776 @default.
- W2012032885 creator A5069268724 @default.
- W2012032885 creator A5069809214 @default.
- W2012032885 date "2013-01-01" @default.
- W2012032885 modified "2023-09-27" @default.
- W2012032885 title "On the Use of Higher-Order Projection Methods for Incompressible Turbulent Flow" @default.
- W2012032885 cites W1965134668 @default.
- W2012032885 cites W1966155583 @default.
- W2012032885 cites W1966890000 @default.
- W2012032885 cites W1973889046 @default.
- W2012032885 cites W1975249766 @default.
- W2012032885 cites W1976906776 @default.
- W2012032885 cites W1979717695 @default.
- W2012032885 cites W1984452672 @default.
- W2012032885 cites W1990893845 @default.
- W2012032885 cites W1991962363 @default.
- W2012032885 cites W1992717809 @default.
- W2012032885 cites W2000068428 @default.
- W2012032885 cites W2002335991 @default.
- W2012032885 cites W2004646935 @default.
- W2012032885 cites W2016248785 @default.
- W2012032885 cites W2017852458 @default.
- W2012032885 cites W2019291954 @default.
- W2012032885 cites W2019971825 @default.
- W2012032885 cites W2047111386 @default.
- W2012032885 cites W2050454880 @default.
- W2012032885 cites W2052487661 @default.
- W2012032885 cites W2062515718 @default.
- W2012032885 cites W2063974582 @default.
- W2012032885 cites W2067870952 @default.
- W2012032885 cites W2073945818 @default.
- W2012032885 cites W2092429904 @default.
- W2012032885 cites W2092771181 @default.
- W2012032885 cites W2099483276 @default.
- W2012032885 cites W2118922968 @default.
- W2012032885 cites W2119634195 @default.
- W2012032885 cites W2122514982 @default.
- W2012032885 cites W2139494815 @default.
- W2012032885 cites W2144541520 @default.
- W2012032885 cites W2154153079 @default.
- W2012032885 cites W2156434603 @default.
- W2012032885 cites W2161077841 @default.
- W2012032885 cites W53834710 @default.
- W2012032885 doi "https://doi.org/10.1137/110829386" @default.
- W2012032885 hasPublicationYear "2013" @default.
- W2012032885 type Work @default.
- W2012032885 sameAs 2012032885 @default.
- W2012032885 citedByCount "21" @default.
- W2012032885 countsByYear W20120328852014 @default.
- W2012032885 countsByYear W20120328852015 @default.
- W2012032885 countsByYear W20120328852016 @default.
- W2012032885 countsByYear W20120328852017 @default.
- W2012032885 countsByYear W20120328852018 @default.
- W2012032885 countsByYear W20120328852019 @default.
- W2012032885 countsByYear W20120328852020 @default.
- W2012032885 countsByYear W20120328852021 @default.
- W2012032885 countsByYear W20120328852022 @default.
- W2012032885 crossrefType "journal-article" @default.
- W2012032885 hasAuthorship W2012032885A5004099733 @default.
- W2012032885 hasAuthorship W2012032885A5058300776 @default.
- W2012032885 hasAuthorship W2012032885A5069268724 @default.
- W2012032885 hasAuthorship W2012032885A5069809214 @default.
- W2012032885 hasConcept C11413529 @default.
- W2012032885 hasConcept C121332964 @default.
- W2012032885 hasConcept C126255220 @default.
- W2012032885 hasConcept C134306372 @default.
- W2012032885 hasConcept C176321772 @default.
- W2012032885 hasConcept C182748727 @default.
- W2012032885 hasConcept C18533594 @default.
- W2012032885 hasConcept C196558001 @default.
- W2012032885 hasConcept C202426404 @default.
- W2012032885 hasConcept C2524010 @default.
- W2012032885 hasConcept C2779251355 @default.
- W2012032885 hasConcept C28826006 @default.
- W2012032885 hasConcept C32526432 @default.
- W2012032885 hasConcept C33923547 @default.
- W2012032885 hasConcept C38349280 @default.
- W2012032885 hasConcept C39177556 @default.
- W2012032885 hasConcept C48753275 @default.
- W2012032885 hasConcept C50415386 @default.
- W2012032885 hasConcept C57493831 @default.
- W2012032885 hasConcept C57879066 @default.
- W2012032885 hasConcept C65557600 @default.
- W2012032885 hasConcept C73000952 @default.
- W2012032885 hasConcept C84655787 @default.
- W2012032885 hasConceptScore W2012032885C11413529 @default.
- W2012032885 hasConceptScore W2012032885C121332964 @default.
- W2012032885 hasConceptScore W2012032885C126255220 @default.
- W2012032885 hasConceptScore W2012032885C134306372 @default.
- W2012032885 hasConceptScore W2012032885C176321772 @default.
- W2012032885 hasConceptScore W2012032885C182748727 @default.
- W2012032885 hasConceptScore W2012032885C18533594 @default.
- W2012032885 hasConceptScore W2012032885C196558001 @default.
- W2012032885 hasConceptScore W2012032885C202426404 @default.
- W2012032885 hasConceptScore W2012032885C2524010 @default.