Matches in SemOpenAlex for { <https://semopenalex.org/work/W2012078367> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W2012078367 abstract "An approach is presented deriving analytical stability and bifurcation conditions for systems with periodically varying coefficients. The method is based on apoint mapping(period to period mapping) representation of the system's dynamics. An algorithm is employed to obtain an analytical expression for the point mapping and its dependence on the system's parameters. The algorithm is devised to derive the coefficients of a multinominal expansion of the point mapping up to an arbitrary order in terms of the state variables and of the parameters. Analytical stability and bifurcation condition are then formulated and expressed as functional relations between the parameters. To demonstrate the application of the method, the parametric stability of Mathieu's equation and of a two-degree of freedom system are investigated. The results obtained by the proposed approach are compared to those obtained by perturbation analysis and by direct integration which we considered to the “exact solution”. It is shown that, unlike perturbation analysis, the proposed method provides very accurate solution even forlarge valuesof the parameters. If an expansion of the point mapping in terms of a small parameter is performed the method is equivalent to perturbation analysis. Moreover, it is demonstrated that the method can be easily applied to multiple-degree-of-freedom systems using the same framework. This feature is an important advantage since most of the existing analysis methods apply mainly to single-degree-of-freedom systems and their extension to higher dimensions is difficult and computationally cumbersome." @default.
- W2012078367 created "2016-06-24" @default.
- W2012078367 creator A5036370966 @default.
- W2012078367 creator A5047392985 @default.
- W2012078367 date "1996-01-01" @default.
- W2012078367 modified "2023-09-27" @default.
- W2012078367 title "STABILITY ANALYSIS OF PERIODIC SYSTEMS BY TRUNCATED POINT MAPPINGS" @default.
- W2012078367 doi "https://doi.org/10.1006/jsvi.1996.0004" @default.
- W2012078367 hasPublicationYear "1996" @default.
- W2012078367 type Work @default.
- W2012078367 sameAs 2012078367 @default.
- W2012078367 citedByCount "18" @default.
- W2012078367 countsByYear W20120783672015 @default.
- W2012078367 countsByYear W20120783672016 @default.
- W2012078367 countsByYear W20120783672018 @default.
- W2012078367 countsByYear W20120783672021 @default.
- W2012078367 crossrefType "journal-article" @default.
- W2012078367 hasAuthorship W2012078367A5036370966 @default.
- W2012078367 hasAuthorship W2012078367A5047392985 @default.
- W2012078367 hasConcept C105795698 @default.
- W2012078367 hasConcept C112972136 @default.
- W2012078367 hasConcept C117251300 @default.
- W2012078367 hasConcept C119857082 @default.
- W2012078367 hasConcept C121332964 @default.
- W2012078367 hasConcept C134306372 @default.
- W2012078367 hasConcept C157097347 @default.
- W2012078367 hasConcept C158622935 @default.
- W2012078367 hasConcept C177918212 @default.
- W2012078367 hasConcept C2781349735 @default.
- W2012078367 hasConcept C28826006 @default.
- W2012078367 hasConcept C33923547 @default.
- W2012078367 hasConcept C41008148 @default.
- W2012078367 hasConcept C62520636 @default.
- W2012078367 hasConceptScore W2012078367C105795698 @default.
- W2012078367 hasConceptScore W2012078367C112972136 @default.
- W2012078367 hasConceptScore W2012078367C117251300 @default.
- W2012078367 hasConceptScore W2012078367C119857082 @default.
- W2012078367 hasConceptScore W2012078367C121332964 @default.
- W2012078367 hasConceptScore W2012078367C134306372 @default.
- W2012078367 hasConceptScore W2012078367C157097347 @default.
- W2012078367 hasConceptScore W2012078367C158622935 @default.
- W2012078367 hasConceptScore W2012078367C177918212 @default.
- W2012078367 hasConceptScore W2012078367C2781349735 @default.
- W2012078367 hasConceptScore W2012078367C28826006 @default.
- W2012078367 hasConceptScore W2012078367C33923547 @default.
- W2012078367 hasConceptScore W2012078367C41008148 @default.
- W2012078367 hasConceptScore W2012078367C62520636 @default.
- W2012078367 hasLocation W20120783671 @default.
- W2012078367 hasOpenAccess W2012078367 @default.
- W2012078367 hasPrimaryLocation W20120783671 @default.
- W2012078367 hasRelatedWork W123208055 @default.
- W2012078367 hasRelatedWork W1481616730 @default.
- W2012078367 hasRelatedWork W1963493841 @default.
- W2012078367 hasRelatedWork W1973831654 @default.
- W2012078367 hasRelatedWork W2018150250 @default.
- W2012078367 hasRelatedWork W2028566934 @default.
- W2012078367 hasRelatedWork W2029373581 @default.
- W2012078367 hasRelatedWork W2034093559 @default.
- W2012078367 hasRelatedWork W2059980677 @default.
- W2012078367 hasRelatedWork W2066171822 @default.
- W2012078367 hasRelatedWork W2069081898 @default.
- W2012078367 hasRelatedWork W2076710141 @default.
- W2012078367 hasRelatedWork W2095012760 @default.
- W2012078367 hasRelatedWork W2116828089 @default.
- W2012078367 hasRelatedWork W2124469803 @default.
- W2012078367 hasRelatedWork W2144996681 @default.
- W2012078367 hasRelatedWork W2237012569 @default.
- W2012078367 hasRelatedWork W2295169085 @default.
- W2012078367 hasRelatedWork W2488673085 @default.
- W2012078367 hasRelatedWork W3051196471 @default.
- W2012078367 isParatext "false" @default.
- W2012078367 isRetracted "false" @default.
- W2012078367 magId "2012078367" @default.
- W2012078367 workType "article" @default.