Matches in SemOpenAlex for { <https://semopenalex.org/work/W2012080641> ?p ?o ?g. }
- W2012080641 endingPage "250" @default.
- W2012080641 startingPage "211" @default.
- W2012080641 abstract "The stress-strain relations and creep behaviour of a dolerite, a microgranodiorite, and a dunite have been determined in uniaxial compression at temperatures up to 1120°C. All three rocks remained brittle at temperatures up to 1050°C, with approximately linear stress-strain relations and small fracture strains. Creep tests were carried out at stresses (< 108 Nm−2)* which were low compared to the uniaxial compressive strength at the same temperature. At these stresses and in experiments with a duration of ∼ 1 d only transient creep was observed, with the creep strain proportional to a fractional power of the time (Andrade creep), as was observed in earlier experiments at lower temperatures, and the creep rate decreased with the elapse of time. The apparent viscosity, therefore, increases with time, having a value in the range 1012 - 1015 Nsm−2 after times of 103s and 1015 -1020 Nsm−2 after times of ∼ 3y (by extrapolation)†. The activation energy for creep at a low stress of 130 × 105 Nm−2 determined for microgranodiorite at temperatures greater than 800°C and for dolerite at temperatures greater than 940°C indicated that the creep was probably diffusion controlled. Using a theory due to Mott, the steady-state creep rate and the corresponding equivalent viscosity were calculated for the conditions of the experiments. The viscosities for pressures on the geotherms of Ringwood were then calculated, by making use of the proportionality between activation energy for diffusion and the absolute melting temperature. For stresses in the range 106 - 108 Nm−2 dolerite has a viscosity of 1019 - 1021 Nsm−2 at at depths of 60–80 kin in oceanic areas, and at depths greater than 120 km in shield areas; and microgranodiorite at the same stresses has a similar viscosity at depths in the range 80–130 km in shield areas. These estimates are in satisfactory agreement with present concepts of the lithosphere. At temperatures above 1050°C the dolerite and microgranodiorite exhibited partial melting. The dolerite remained brittle, with the partial melt being extruded from microfractures, but the microgranodiorite showed some ductility. We can postulate that even rocks deep in the mantle may be brittle if their temperatures are not more than ∼1000°C. A discussion is given of the apparent conflict between the experimental observation of hot brittleness and the geological observation that even some comparatively cool silicate rocks have apparently deformed in a ductile manner." @default.
- W2012080641 created "2016-06-24" @default.
- W2012080641 creator A5040826928 @default.
- W2012080641 creator A5087206490 @default.
- W2012080641 date "1973-11-01" @default.
- W2012080641 modified "2023-10-18" @default.
- W2012080641 title "Some New Rheological Experiments on Igneous Rocks at Temperatures up to 1120 C" @default.
- W2012080641 cites W1970094324 @default.
- W2012080641 cites W1971401503 @default.
- W2012080641 cites W1971684836 @default.
- W2012080641 cites W1971745945 @default.
- W2012080641 cites W1971905061 @default.
- W2012080641 cites W1973065867 @default.
- W2012080641 cites W1979419752 @default.
- W2012080641 cites W1987089086 @default.
- W2012080641 cites W1987792817 @default.
- W2012080641 cites W1988005274 @default.
- W2012080641 cites W1989264903 @default.
- W2012080641 cites W1994116266 @default.
- W2012080641 cites W1997911623 @default.
- W2012080641 cites W2000329191 @default.
- W2012080641 cites W2001566429 @default.
- W2012080641 cites W2015572779 @default.
- W2012080641 cites W2017497755 @default.
- W2012080641 cites W2026072185 @default.
- W2012080641 cites W2027893911 @default.
- W2012080641 cites W2030415804 @default.
- W2012080641 cites W2031673429 @default.
- W2012080641 cites W2031808079 @default.
- W2012080641 cites W2032875828 @default.
- W2012080641 cites W2034061863 @default.
- W2012080641 cites W2038152719 @default.
- W2012080641 cites W2038440200 @default.
- W2012080641 cites W2039867875 @default.
- W2012080641 cites W2043081897 @default.
- W2012080641 cites W2043546840 @default.
- W2012080641 cites W2049860107 @default.
- W2012080641 cites W2052701851 @default.
- W2012080641 cites W2056482209 @default.
- W2012080641 cites W2062957681 @default.
- W2012080641 cites W2063377258 @default.
- W2012080641 cites W2071380762 @default.
- W2012080641 cites W2072915131 @default.
- W2012080641 cites W2075899884 @default.
- W2012080641 cites W2077051209 @default.
- W2012080641 cites W2077117335 @default.
- W2012080641 cites W2078034729 @default.
- W2012080641 cites W2082690703 @default.
- W2012080641 cites W2089022465 @default.
- W2012080641 cites W2089621169 @default.
- W2012080641 cites W2100527368 @default.
- W2012080641 cites W2103507313 @default.
- W2012080641 cites W2116519903 @default.
- W2012080641 cites W2121857167 @default.
- W2012080641 cites W2134357593 @default.
- W2012080641 cites W2138771754 @default.
- W2012080641 cites W2139534226 @default.
- W2012080641 cites W2144684464 @default.
- W2012080641 cites W2156853699 @default.
- W2012080641 cites W2160592421 @default.
- W2012080641 cites W2264169660 @default.
- W2012080641 cites W2315270702 @default.
- W2012080641 cites W2316279466 @default.
- W2012080641 cites W2317307042 @default.
- W2012080641 cites W2319134622 @default.
- W2012080641 cites W2326627574 @default.
- W2012080641 cites W2333414322 @default.
- W2012080641 cites W2337008976 @default.
- W2012080641 cites W3016256493 @default.
- W2012080641 cites W4233694638 @default.
- W2012080641 doi "https://doi.org/10.1111/j.1365-246x.1973.tb02394.x" @default.
- W2012080641 hasPublicationYear "1973" @default.
- W2012080641 type Work @default.
- W2012080641 sameAs 2012080641 @default.
- W2012080641 citedByCount "63" @default.
- W2012080641 countsByYear W20120806412013 @default.
- W2012080641 countsByYear W20120806412014 @default.
- W2012080641 countsByYear W20120806412016 @default.
- W2012080641 countsByYear W20120806412017 @default.
- W2012080641 countsByYear W20120806412018 @default.
- W2012080641 countsByYear W20120806412019 @default.
- W2012080641 countsByYear W20120806412020 @default.
- W2012080641 countsByYear W20120806412022 @default.
- W2012080641 countsByYear W20120806412023 @default.
- W2012080641 crossrefType "journal-article" @default.
- W2012080641 hasAuthorship W2012080641A5040826928 @default.
- W2012080641 hasAuthorship W2012080641A5087206490 @default.
- W2012080641 hasBestOaLocation W20120806411 @default.
- W2012080641 hasConcept C121332964 @default.
- W2012080641 hasConcept C127172972 @default.
- W2012080641 hasConcept C127313418 @default.
- W2012080641 hasConcept C132459708 @default.
- W2012080641 hasConcept C134306372 @default.
- W2012080641 hasConcept C136478896 @default.
- W2012080641 hasConcept C138885662 @default.
- W2012080641 hasConcept C149342994 @default.
- W2012080641 hasConcept C149912024 @default.
- W2012080641 hasConcept C159985019 @default.