Matches in SemOpenAlex for { <https://semopenalex.org/work/W2012125701> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W2012125701 endingPage "3697" @default.
- W2012125701 startingPage "3685" @default.
- W2012125701 abstract "An O(σvN) Eulerian stochastic theory [Cushman and Hu, 1997] for conservative transport is coupled with an O(σf4) Eulerian solution to the flow problem. The theory provides a self-consistent recursive solution to the closure problem associated with Eulerian methods. The stochastic concentration is given to arbitrary order in σv, the variance of fluctuating velocity. The balance law for mean concentration is not required in the analysis. Closed forms for mean concentration are given up to O(σv4). The mean concentration is transformed to wave-vector and frequency domain via fast Fourier transform to calculate numerically the mean concentration as well as its spatial moments. The results show that the first-order solution in σv2 is equivalent to the nonlocal theory ofDeng et al. [1993]. Second-order corrections to flow and transport equations slightly decrease the second longitudinal moment but significantly increase the second transverse moment, which is consistent with Hsu et al.'s [1996] results. The influence of second-order corrections to skewness is not clear. The second longitudinal moment obtained from the second-order correction agrees with the Monte Carlo result, but second-order results for the second transverse moment and skewness significantly differ from those given in Monte Carlo simulations. Coupling the transport correction models with the velocity covariance generated through Monte Carlo simulation gives second transverse spatial moments that are very close to Monte Carlo simulations, which suggests that the correction to flow is more important than the correction to transport. The results also bring into question the accuracy of Monte Carlo simulations for flow." @default.
- W2012125701 created "2016-06-24" @default.
- W2012125701 creator A5063935946 @default.
- W2012125701 creator A5085393393 @default.
- W2012125701 creator A5091586373 @default.
- W2012125701 date "1999-12-01" @default.
- W2012125701 modified "2023-09-26" @default.
- W2012125701 title "Eulerian solutions of O (σ N v ) for the stochastic transport problem for conservative tracers coupled with O (σ4 ƒ ) solutions for the flow problem in an infinite domain" @default.
- W2012125701 cites W1592093959 @default.
- W2012125701 cites W1607353850 @default.
- W2012125701 cites W1969965325 @default.
- W2012125701 cites W1976003395 @default.
- W2012125701 cites W1976708721 @default.
- W2012125701 cites W1979696461 @default.
- W2012125701 cites W1986308840 @default.
- W2012125701 cites W1988072540 @default.
- W2012125701 cites W1988921632 @default.
- W2012125701 cites W1989609588 @default.
- W2012125701 cites W1989714028 @default.
- W2012125701 cites W1989715942 @default.
- W2012125701 cites W1997905175 @default.
- W2012125701 cites W2002747402 @default.
- W2012125701 cites W2022463522 @default.
- W2012125701 cites W2035325510 @default.
- W2012125701 cites W2066941586 @default.
- W2012125701 cites W2073872063 @default.
- W2012125701 cites W2074304118 @default.
- W2012125701 cites W2080544117 @default.
- W2012125701 cites W2105200154 @default.
- W2012125701 cites W2121092123 @default.
- W2012125701 cites W2125243928 @default.
- W2012125701 cites W2129135275 @default.
- W2012125701 cites W2157468756 @default.
- W2012125701 cites W587830888 @default.
- W2012125701 doi "https://doi.org/10.1029/1999wr900267" @default.
- W2012125701 hasPublicationYear "1999" @default.
- W2012125701 type Work @default.
- W2012125701 sameAs 2012125701 @default.
- W2012125701 citedByCount "12" @default.
- W2012125701 crossrefType "journal-article" @default.
- W2012125701 hasAuthorship W2012125701A5063935946 @default.
- W2012125701 hasAuthorship W2012125701A5085393393 @default.
- W2012125701 hasAuthorship W2012125701A5091586373 @default.
- W2012125701 hasConcept C121332964 @default.
- W2012125701 hasConcept C126255220 @default.
- W2012125701 hasConcept C134306372 @default.
- W2012125701 hasConcept C192562407 @default.
- W2012125701 hasConcept C28826006 @default.
- W2012125701 hasConcept C33923547 @default.
- W2012125701 hasConcept C36503486 @default.
- W2012125701 hasConcept C38349280 @default.
- W2012125701 hasConcept C43058520 @default.
- W2012125701 hasConcept C53469067 @default.
- W2012125701 hasConcept C57879066 @default.
- W2012125701 hasConceptScore W2012125701C121332964 @default.
- W2012125701 hasConceptScore W2012125701C126255220 @default.
- W2012125701 hasConceptScore W2012125701C134306372 @default.
- W2012125701 hasConceptScore W2012125701C192562407 @default.
- W2012125701 hasConceptScore W2012125701C28826006 @default.
- W2012125701 hasConceptScore W2012125701C33923547 @default.
- W2012125701 hasConceptScore W2012125701C36503486 @default.
- W2012125701 hasConceptScore W2012125701C38349280 @default.
- W2012125701 hasConceptScore W2012125701C43058520 @default.
- W2012125701 hasConceptScore W2012125701C53469067 @default.
- W2012125701 hasConceptScore W2012125701C57879066 @default.
- W2012125701 hasIssue "12" @default.
- W2012125701 hasLocation W20121257011 @default.
- W2012125701 hasOpenAccess W2012125701 @default.
- W2012125701 hasPrimaryLocation W20121257011 @default.
- W2012125701 hasRelatedWork W1964972712 @default.
- W2012125701 hasRelatedWork W1994109492 @default.
- W2012125701 hasRelatedWork W2089811522 @default.
- W2012125701 hasRelatedWork W2091664552 @default.
- W2012125701 hasRelatedWork W2298446516 @default.
- W2012125701 hasRelatedWork W2351859806 @default.
- W2012125701 hasRelatedWork W2525506320 @default.
- W2012125701 hasRelatedWork W2806333758 @default.
- W2012125701 hasRelatedWork W4205135043 @default.
- W2012125701 hasRelatedWork W4239376463 @default.
- W2012125701 hasVolume "35" @default.
- W2012125701 isParatext "false" @default.
- W2012125701 isRetracted "false" @default.
- W2012125701 magId "2012125701" @default.
- W2012125701 workType "article" @default.