Matches in SemOpenAlex for { <https://semopenalex.org/work/W2012140367> ?p ?o ?g. }
Showing items 1 to 52 of
52
with 100 items per page.
- W2012140367 endingPage "416" @default.
- W2012140367 startingPage "403" @default.
- W2012140367 abstract "The exact Fourier coefficients <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=c Subscript j Baseline left-parenthesis upper P Subscript n Baseline f right-parenthesis> <mml:semantics> <mml:mrow> <mml:mrow class=MJX-TeXAtom-ORD> <mml:msub> <mml:mi>c</mml:mi> <mml:mi>j</mml:mi> </mml:msub> </mml:mrow> <mml:mo stretchy=false>(</mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:msub> <mml:mi>P</mml:mi> <mml:mi>n</mml:mi> </mml:msub> </mml:mrow> <mml:mi>f</mml:mi> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>{c_j}({P_n}f)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> are proportional to the discrete Fourier coefficients <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=d Subscript j Superscript left-parenthesis n right-parenthesis Baseline left-parenthesis f right-parenthesis> <mml:semantics> <mml:mrow> <mml:msubsup> <mml:mi>d</mml:mi> <mml:mi>j</mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mo stretchy=false>(</mml:mo> <mml:mi>n</mml:mi> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> </mml:msubsup> <mml:mo stretchy=false>(</mml:mo> <mml:mi>f</mml:mi> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>d_j^{(n)}(f)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> if <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper P Subscript n> <mml:semantics> <mml:mrow class=MJX-TeXAtom-ORD> <mml:msub> <mml:mi>P</mml:mi> <mml:mi>n</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding=application/x-tex>{P_n}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a translation invariant operator which depends only on the values of <italic>f</italic> on an equidistant mesh of width <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=2 pi slash n> <mml:semantics> <mml:mrow> <mml:mn>2</mml:mn> <mml:mi>π<!-- π --></mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>n</mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>2pi /n</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. The proportionality factors which depend only on <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper P Subscript n> <mml:semantics> <mml:mrow class=MJX-TeXAtom-ORD> <mml:msub> <mml:mi>P</mml:mi> <mml:mi>n</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding=application/x-tex>{P_n}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> but not on <italic>f</italic> are called attenuation factors and have been calculated for several operators <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper P Subscript n> <mml:semantics> <mml:mrow class=MJX-TeXAtom-ORD> <mml:msub> <mml:mi>P</mml:mi> <mml:mi>n</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding=application/x-tex>{P_n}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of spline type. Here we analyze first the interpolation problem which is produced by the functions <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=sigma left-parenthesis bullet minus 2 pi j slash n right-parenthesis comma j equals 0 comma ellipsis comma n minus 1> <mml:semantics> <mml:mrow> <mml:mi>σ<!-- σ --></mml:mi> <mml:mo stretchy=false>(</mml:mo> <mml:mo>∙<!-- ∙ --></mml:mo> <mml:mo>−<!-- − --></mml:mo> <mml:mn>2</mml:mn> <mml:mi>π<!-- π --></mml:mi> <mml:mi>j</mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>n</mml:mi> <mml:mo stretchy=false>)</mml:mo> <mml:mo>,</mml:mo> <mml:mi>j</mml:mi> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mo>…<!-- … --></mml:mo> <mml:mo>,</mml:mo> <mml:mi>n</mml:mi> <mml:mo>−<!-- − --></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=application/x-tex>sigma ( bullet - 2pi j/n),j = 0, ldots ,n - 1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, where <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=sigma> <mml:semantics> <mml:mi>σ<!-- σ --></mml:mi> <mml:annotation encoding=application/x-tex>sigma</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a suitable <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=2 pi> <mml:semantics> <mml:mrow> <mml:mn>2</mml:mn> <mml:mi>π<!-- π --></mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>2pi</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-periodic generating function. It is essential that the associated interpolation matrix is of discrete convolution type. Thus, we can derive conditions guaranteeing the unique solvability of the interpolation problem and representations of the interpolating function. Then the attenuation factors may be expressed in terms of the Fourier coefficients of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=sigma> <mml:semantics> <mml:mi>σ<!-- σ --></mml:mi> <mml:annotation encoding=application/x-tex>sigma</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We point especially to the case where <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=sigma> <mml:semantics> <mml:mi>σ<!-- σ --></mml:mi> <mml:annotation encoding=application/x-tex>sigma</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a reproducing kernel in a suitable Hilbert space. Here we get attenuation factors of a new type which are generated by interpolation with analytic functions." @default.
- W2012140367 created "2016-06-24" @default.
- W2012140367 creator A5025503610 @default.
- W2012140367 date "1981-01-01" @default.
- W2012140367 modified "2023-09-25" @default.
- W2012140367 title "Interpolation on uniform meshes by the translates of one function and related attenuation factors" @default.
- W2012140367 cites W1262043566 @default.
- W2012140367 cites W183883187 @default.
- W2012140367 cites W1979890707 @default.
- W2012140367 cites W1996087276 @default.
- W2012140367 cites W2061361918 @default.
- W2012140367 cites W2131817259 @default.
- W2012140367 cites W4242890291 @default.
- W2012140367 doi "https://doi.org/10.1090/s0025-5718-1981-0628704-2" @default.
- W2012140367 hasPublicationYear "1981" @default.
- W2012140367 type Work @default.
- W2012140367 sameAs 2012140367 @default.
- W2012140367 citedByCount "27" @default.
- W2012140367 countsByYear W20121403672013 @default.
- W2012140367 countsByYear W20121403672014 @default.
- W2012140367 countsByYear W20121403672018 @default.
- W2012140367 countsByYear W20121403672020 @default.
- W2012140367 crossrefType "journal-article" @default.
- W2012140367 hasAuthorship W2012140367A5025503610 @default.
- W2012140367 hasBestOaLocation W20121403671 @default.
- W2012140367 hasConcept C11413529 @default.
- W2012140367 hasConcept C154945302 @default.
- W2012140367 hasConcept C41008148 @default.
- W2012140367 hasConceptScore W2012140367C11413529 @default.
- W2012140367 hasConceptScore W2012140367C154945302 @default.
- W2012140367 hasConceptScore W2012140367C41008148 @default.
- W2012140367 hasIssue "156" @default.
- W2012140367 hasLocation W20121403671 @default.
- W2012140367 hasOpenAccess W2012140367 @default.
- W2012140367 hasPrimaryLocation W20121403671 @default.
- W2012140367 hasRelatedWork W2051487156 @default.
- W2012140367 hasRelatedWork W2351491280 @default.
- W2012140367 hasRelatedWork W2358668433 @default.
- W2012140367 hasRelatedWork W2371447506 @default.
- W2012140367 hasRelatedWork W2386767533 @default.
- W2012140367 hasRelatedWork W2390279801 @default.
- W2012140367 hasRelatedWork W2748952813 @default.
- W2012140367 hasRelatedWork W2899084033 @default.
- W2012140367 hasRelatedWork W303980170 @default.
- W2012140367 hasRelatedWork W3107474891 @default.
- W2012140367 hasVolume "37" @default.
- W2012140367 isParatext "false" @default.
- W2012140367 isRetracted "false" @default.
- W2012140367 magId "2012140367" @default.
- W2012140367 workType "article" @default.