Matches in SemOpenAlex for { <https://semopenalex.org/work/W2012164061> ?p ?o ?g. }
Showing items 1 to 63 of
63
with 100 items per page.
- W2012164061 endingPage "19" @default.
- W2012164061 startingPage "13" @default.
- W2012164061 abstract "It is shown that, for any k , there exist infinitely many positive integers n such that in the prime power factorization of n !, all first k primes appear to even exponents. This answers a question of Erdős and Graham (“Old and New Problems and Results in Combinatorial Number Theory,” L'Enseignement Mathématique, Imprimerie Kundia, Geneva, 1980). A few generalizations are provided as well." @default.
- W2012164061 created "2016-06-24" @default.
- W2012164061 creator A5067369330 @default.
- W2012164061 date "1997-05-01" @default.
- W2012164061 modified "2023-10-14" @default.
- W2012164061 title "On the Parity of Exponents in the Factorization ofn!" @default.
- W2012164061 cites W2070302103 @default.
- W2012164061 cites W2115624046 @default.
- W2012164061 doi "https://doi.org/10.1006/jnth.1997.2106" @default.
- W2012164061 hasPublicationYear "1997" @default.
- W2012164061 type Work @default.
- W2012164061 sameAs 2012164061 @default.
- W2012164061 citedByCount "12" @default.
- W2012164061 countsByYear W20121640612013 @default.
- W2012164061 countsByYear W20121640612016 @default.
- W2012164061 crossrefType "journal-article" @default.
- W2012164061 hasAuthorship W2012164061A5067369330 @default.
- W2012164061 hasBestOaLocation W20121640611 @default.
- W2012164061 hasConcept C109214941 @default.
- W2012164061 hasConcept C113429393 @default.
- W2012164061 hasConcept C11413529 @default.
- W2012164061 hasConcept C114614502 @default.
- W2012164061 hasConcept C118615104 @default.
- W2012164061 hasConcept C121332964 @default.
- W2012164061 hasConcept C169654258 @default.
- W2012164061 hasConcept C184992742 @default.
- W2012164061 hasConcept C187834632 @default.
- W2012164061 hasConcept C2777151079 @default.
- W2012164061 hasConcept C30860621 @default.
- W2012164061 hasConcept C33923547 @default.
- W2012164061 hasConceptScore W2012164061C109214941 @default.
- W2012164061 hasConceptScore W2012164061C113429393 @default.
- W2012164061 hasConceptScore W2012164061C11413529 @default.
- W2012164061 hasConceptScore W2012164061C114614502 @default.
- W2012164061 hasConceptScore W2012164061C118615104 @default.
- W2012164061 hasConceptScore W2012164061C121332964 @default.
- W2012164061 hasConceptScore W2012164061C169654258 @default.
- W2012164061 hasConceptScore W2012164061C184992742 @default.
- W2012164061 hasConceptScore W2012164061C187834632 @default.
- W2012164061 hasConceptScore W2012164061C2777151079 @default.
- W2012164061 hasConceptScore W2012164061C30860621 @default.
- W2012164061 hasConceptScore W2012164061C33923547 @default.
- W2012164061 hasIssue "1" @default.
- W2012164061 hasLocation W20121640611 @default.
- W2012164061 hasOpenAccess W2012164061 @default.
- W2012164061 hasPrimaryLocation W20121640611 @default.
- W2012164061 hasRelatedWork W2012164061 @default.
- W2012164061 hasRelatedWork W2132137382 @default.
- W2012164061 hasRelatedWork W2588017875 @default.
- W2012164061 hasRelatedWork W2967551370 @default.
- W2012164061 hasRelatedWork W2981135087 @default.
- W2012164061 hasRelatedWork W2982600448 @default.
- W2012164061 hasRelatedWork W3093218757 @default.
- W2012164061 hasRelatedWork W3111602167 @default.
- W2012164061 hasRelatedWork W4213038763 @default.
- W2012164061 hasRelatedWork W3015786081 @default.
- W2012164061 hasVolume "64" @default.
- W2012164061 isParatext "false" @default.
- W2012164061 isRetracted "false" @default.
- W2012164061 magId "2012164061" @default.
- W2012164061 workType "article" @default.