Matches in SemOpenAlex for { <https://semopenalex.org/work/W2012177214> ?p ?o ?g. }
- W2012177214 endingPage "411" @default.
- W2012177214 startingPage "395" @default.
- W2012177214 abstract "Global compilations of surface heat flow data from stable, Precambrian terrains show a statistically significant secular change from 41±11 mW/m2 in Archean to 55±17 mW/m2 in Proterozoic regions far removed from Archean cratons. Using the tectonothermal age of the continents coupled with average heat flow for different age provinces yields a mean continental surface heat flow between 47 and 49 mW/m2 (depending on the average, non-orogenic heat flow assumed for Phanerozoic regions). Compositional models for bulk continental crust that produce this much or more heat flow (i.e., K2O>2.3–2.4 wt%) are not consistent with these observations. More rigorous constraints on crust composition cannot be had from heat flow data until the relative contributions to surface heat flow from crust and mantle are better determined and the non-orogenic component of heat flow in the areally extensive Phanerozoic regions (35% of the continents) is determined. We calculate conductive geotherms for 41 mW/m2 surface heat flow to place limits on the heat production of Archean mantle roots and to evaluate the significance of the pressure–temperature (P–T) array for cratonic mantle xenoliths. Widely variable geotherms exist for this surface heat flow, depending on the values of crustal and lithospheric mantle heat production that are adopted. Using the average K content of cratonic peridotite xenoliths (0.15 wt% K2O, assuming Th/U=3.9 and K/U=10,000 to give a heat production of 0.093 μW/m3) and a range of reasonable crustal heat production values (i.e., ≥0.5 μW/m3), we calculate geotherms that are so strongly curved they never intersect the mantle adiabat. Thus the average cratonic peridotite is not representative of the heat production of Archean mantle roots. Using our preferred estimate of heat production in the cratonic mantle (0.03 wt% K2O, or 0.019 μW/m3) we find that the only geotherms that pass through the xenolith P–T data array are those corresponding to crust having very low heat production (<0.9 wt% K2O). If the lithospheric mantle heat production is higher than our preferred values, the continental crust must have correspondingly lower heat production (i.e., bulk crustal K, Th and U contents lower than that of average Archean granulite facies terrains), which we consider unlikely. If the xenolith P–T data reflect equilibration to a conductive geotherm, then Archean lithosphere is relatively thin (150–200 km, based on intersection of the P–T array with the mantle adiabat) and the primary reason for the lower surface heat flow in Archean regions is decreased crustal heat production, rather than the insulating effects of thick lithospheric roots. On the other hand, if the xenolith P–T points result from frozen-in mineral equilibria or reflect perturbed geotherms associated with magmatism, then the Archean crust can have higher heat producing element concentrations, lithospheric thickness can range to greater depths and the low surface heat flow in Archean cratons may be due to the insulating effects of thick lithospheric roots. An uppermost limit for Archean crustal heat production of 0.77 μW/m3 is determined from the heat flow systematics." @default.
- W2012177214 created "2016-06-24" @default.
- W2012177214 creator A5016983675 @default.
- W2012177214 creator A5034443346 @default.
- W2012177214 creator A5051242040 @default.
- W2012177214 date "1998-04-01" @default.
- W2012177214 modified "2023-10-10" @default.
- W2012177214 title "Thermal structure, thickness and composition of continental lithosphere" @default.
- W2012177214 cites W1522212896 @default.
- W2012177214 cites W1657792928 @default.
- W2012177214 cites W1964175282 @default.
- W2012177214 cites W1967216006 @default.
- W2012177214 cites W1968875884 @default.
- W2012177214 cites W1973012528 @default.
- W2012177214 cites W1973603014 @default.
- W2012177214 cites W1986730322 @default.
- W2012177214 cites W1987105966 @default.
- W2012177214 cites W1988024307 @default.
- W2012177214 cites W1992357382 @default.
- W2012177214 cites W1993810260 @default.
- W2012177214 cites W1998841391 @default.
- W2012177214 cites W1998859784 @default.
- W2012177214 cites W2014828526 @default.
- W2012177214 cites W2018420499 @default.
- W2012177214 cites W2024833317 @default.
- W2012177214 cites W2025841258 @default.
- W2012177214 cites W2027315840 @default.
- W2012177214 cites W2041905619 @default.
- W2012177214 cites W2042805047 @default.
- W2012177214 cites W2045213729 @default.
- W2012177214 cites W2046141409 @default.
- W2012177214 cites W2047330594 @default.
- W2012177214 cites W2051189536 @default.
- W2012177214 cites W2052474296 @default.
- W2012177214 cites W2053342234 @default.
- W2012177214 cites W2071162807 @default.
- W2012177214 cites W2071213199 @default.
- W2012177214 cites W2080192250 @default.
- W2012177214 cites W2097502986 @default.
- W2012177214 cites W2100210332 @default.
- W2012177214 cites W2110378282 @default.
- W2012177214 cites W2127888210 @default.
- W2012177214 cites W2132286805 @default.
- W2012177214 cites W2133396666 @default.
- W2012177214 cites W2137829824 @default.
- W2012177214 cites W2145681151 @default.
- W2012177214 cites W2160809783 @default.
- W2012177214 cites W2315292953 @default.
- W2012177214 cites W2899956941 @default.
- W2012177214 cites W3022413858 @default.
- W2012177214 cites W409810036 @default.
- W2012177214 cites W4248314355 @default.
- W2012177214 cites W4250199232 @default.
- W2012177214 cites W4252858842 @default.
- W2012177214 doi "https://doi.org/10.1016/s0009-2541(97)00151-4" @default.
- W2012177214 hasPublicationYear "1998" @default.
- W2012177214 type Work @default.
- W2012177214 sameAs 2012177214 @default.
- W2012177214 citedByCount "444" @default.
- W2012177214 countsByYear W20121772142012 @default.
- W2012177214 countsByYear W20121772142013 @default.
- W2012177214 countsByYear W20121772142014 @default.
- W2012177214 countsByYear W20121772142015 @default.
- W2012177214 countsByYear W20121772142016 @default.
- W2012177214 countsByYear W20121772142017 @default.
- W2012177214 countsByYear W20121772142018 @default.
- W2012177214 countsByYear W20121772142019 @default.
- W2012177214 countsByYear W20121772142020 @default.
- W2012177214 countsByYear W20121772142021 @default.
- W2012177214 countsByYear W20121772142022 @default.
- W2012177214 countsByYear W20121772142023 @default.
- W2012177214 crossrefType "journal-article" @default.
- W2012177214 hasAuthorship W2012177214A5016983675 @default.
- W2012177214 hasAuthorship W2012177214A5034443346 @default.
- W2012177214 hasAuthorship W2012177214A5051242040 @default.
- W2012177214 hasConcept C109007969 @default.
- W2012177214 hasConcept C114793014 @default.
- W2012177214 hasConcept C127313418 @default.
- W2012177214 hasConcept C141646446 @default.
- W2012177214 hasConcept C147717901 @default.
- W2012177214 hasConcept C149347711 @default.
- W2012177214 hasConcept C151730666 @default.
- W2012177214 hasConcept C167570900 @default.
- W2012177214 hasConcept C16942324 @default.
- W2012177214 hasConcept C173776410 @default.
- W2012177214 hasConcept C17409809 @default.
- W2012177214 hasConcept C1965285 @default.
- W2012177214 hasConcept C2776698055 @default.
- W2012177214 hasConcept C5900021 @default.
- W2012177214 hasConcept C67236022 @default.
- W2012177214 hasConcept C73707237 @default.
- W2012177214 hasConcept C77928131 @default.
- W2012177214 hasConcept C8058405 @default.
- W2012177214 hasConcept C84372278 @default.
- W2012177214 hasConcept C93033518 @default.
- W2012177214 hasConceptScore W2012177214C109007969 @default.
- W2012177214 hasConceptScore W2012177214C114793014 @default.
- W2012177214 hasConceptScore W2012177214C127313418 @default.