Matches in SemOpenAlex for { <https://semopenalex.org/work/W2012180434> ?p ?o ?g. }
- W2012180434 endingPage "463" @default.
- W2012180434 startingPage "451" @default.
- W2012180434 abstract "Imputations of missing values and optimal smoothing with massive data arrays poses a computational challenge since ordinary kriging becomes infeasible. Imputation and smoothing with standard algorithms like inverse distance weighted nearest neighbour interpolation (IDW) and interpolation on triangulated irregular networks (TIN/IP) fail to incorporate the spatial structure and ignore information beyond the neighbourhood. Multiresolution spatial models (MRSM) or approximate kriging methods adapted to handling massive data sets can be expected to do better than IDW and TIN/IP in terms of mean square errors of prediction (MSEP). We illustrate a MRSM that is efficient, computationally fast, and easy to implement. In two forestry examples with imputation of LiDAR range values the MRSM achieved a lower MSEP than IDW, TIN/IP, and fixed ranked kriging. MRSM appear as especially attractive for the construction of a DTM from last return LiDAR pulses. A third example demonstrates MRSM for efficient smoothing." @default.
- W2012180434 created "2016-06-24" @default.
- W2012180434 creator A5034250940 @default.
- W2012180434 creator A5051219165 @default.
- W2012180434 creator A5058680235 @default.
- W2012180434 date "2007-08-01" @default.
- W2012180434 modified "2023-09-27" @default.
- W2012180434 title "Efficient multiresolution spatial predictions for large data arrays" @default.
- W2012180434 cites W174107858 @default.
- W2012180434 cites W1963603214 @default.
- W2012180434 cites W1965597456 @default.
- W2012180434 cites W1974238999 @default.
- W2012180434 cites W1979791659 @default.
- W2012180434 cites W1980342687 @default.
- W2012180434 cites W1994683528 @default.
- W2012180434 cites W2000299034 @default.
- W2012180434 cites W2007605362 @default.
- W2012180434 cites W2008575896 @default.
- W2012180434 cites W2013463109 @default.
- W2012180434 cites W2015554311 @default.
- W2012180434 cites W2017535969 @default.
- W2012180434 cites W2021793377 @default.
- W2012180434 cites W2022928697 @default.
- W2012180434 cites W2027081786 @default.
- W2012180434 cites W2027672019 @default.
- W2012180434 cites W2030359906 @default.
- W2012180434 cites W2033054774 @default.
- W2012180434 cites W2034861865 @default.
- W2012180434 cites W2041320831 @default.
- W2012180434 cites W2043791862 @default.
- W2012180434 cites W2045954050 @default.
- W2012180434 cites W2046202035 @default.
- W2012180434 cites W2058616361 @default.
- W2012180434 cites W2061320421 @default.
- W2012180434 cites W2063580009 @default.
- W2012180434 cites W2063789326 @default.
- W2012180434 cites W2069236954 @default.
- W2012180434 cites W2072892009 @default.
- W2012180434 cites W2076231051 @default.
- W2012180434 cites W2097631297 @default.
- W2012180434 cites W2098919237 @default.
- W2012180434 cites W2111759081 @default.
- W2012180434 cites W2117527927 @default.
- W2012180434 cites W2132097058 @default.
- W2012180434 cites W2132566436 @default.
- W2012180434 cites W2134633420 @default.
- W2012180434 cites W2136564220 @default.
- W2012180434 cites W2155300412 @default.
- W2012180434 cites W2157171484 @default.
- W2012180434 cites W2158161282 @default.
- W2012180434 cites W2158411533 @default.
- W2012180434 cites W2170883673 @default.
- W2012180434 doi "https://doi.org/10.1016/j.rse.2007.01.018" @default.
- W2012180434 hasPublicationYear "2007" @default.
- W2012180434 type Work @default.
- W2012180434 sameAs 2012180434 @default.
- W2012180434 citedByCount "15" @default.
- W2012180434 countsByYear W20121804342013 @default.
- W2012180434 countsByYear W20121804342014 @default.
- W2012180434 countsByYear W20121804342016 @default.
- W2012180434 countsByYear W20121804342019 @default.
- W2012180434 countsByYear W20121804342020 @default.
- W2012180434 crossrefType "journal-article" @default.
- W2012180434 hasAuthorship W2012180434A5034250940 @default.
- W2012180434 hasAuthorship W2012180434A5051219165 @default.
- W2012180434 hasAuthorship W2012180434A5058680235 @default.
- W2012180434 hasConcept C104114177 @default.
- W2012180434 hasConcept C105795698 @default.
- W2012180434 hasConcept C11413529 @default.
- W2012180434 hasConcept C119857082 @default.
- W2012180434 hasConcept C124101348 @default.
- W2012180434 hasConcept C127313418 @default.
- W2012180434 hasConcept C131509275 @default.
- W2012180434 hasConcept C137800194 @default.
- W2012180434 hasConcept C139945424 @default.
- W2012180434 hasConcept C154945302 @default.
- W2012180434 hasConcept C159620131 @default.
- W2012180434 hasConcept C181843262 @default.
- W2012180434 hasConcept C203332170 @default.
- W2012180434 hasConcept C205203396 @default.
- W2012180434 hasConcept C31972630 @default.
- W2012180434 hasConcept C33923547 @default.
- W2012180434 hasConcept C3770464 @default.
- W2012180434 hasConcept C41008148 @default.
- W2012180434 hasConcept C47872207 @default.
- W2012180434 hasConcept C51399673 @default.
- W2012180434 hasConcept C58041806 @default.
- W2012180434 hasConcept C62649853 @default.
- W2012180434 hasConcept C81692654 @default.
- W2012180434 hasConcept C9357733 @default.
- W2012180434 hasConceptScore W2012180434C104114177 @default.
- W2012180434 hasConceptScore W2012180434C105795698 @default.
- W2012180434 hasConceptScore W2012180434C11413529 @default.
- W2012180434 hasConceptScore W2012180434C119857082 @default.
- W2012180434 hasConceptScore W2012180434C124101348 @default.
- W2012180434 hasConceptScore W2012180434C127313418 @default.
- W2012180434 hasConceptScore W2012180434C131509275 @default.
- W2012180434 hasConceptScore W2012180434C137800194 @default.