Matches in SemOpenAlex for { <https://semopenalex.org/work/W2012183198> ?p ?o ?g. }
- W2012183198 endingPage "296" @default.
- W2012183198 startingPage "275" @default.
- W2012183198 abstract "We studied the water chemistry of two large and geologically differing Himalayan watersheds in order to maximize the contrast between silicate versus carbonate weathering effects on river chemistry. Our previous research involved the Seti River of westernmost Nepal, geologically typical of many rivers in Nepal in draining mixed carbonate/silicate lithologies, including abundant carbonate rocks of the Lesser Himalayan Sequence. For comparison, the Arun River was chosen for study because south of the Himalayan front it drains almost exclusively Greater and Lesser Himalayan silicate rocks. Despite this dominance of silicate rocks, carbonate weathering—probably of metamorphic calcite in Great Himalayan paragneisses—is clearly in evidence in many Arun watersheds. Weathering of silicate rocks exposed all along the Arun south of the range front has a small impact on mainstem river chemistry. The mainstems of both the Seti and Arun systems are dominated by weathering of carbonate rocks, although the contribution of silicate weathering is more visible in Arun mainstem chemistry. The carbonate weathering source to the Arun mainstem is probably both limestone in the Tethyan Sequence widely exposed in northern headwaters of the system, and metamorphic calcite within the Greater Himalayan Sequence. A number of small watersheds along the Arun and Seti appear to be carbonate-free. They probably provide the best constraints to date on the Ca/Na and Mg/Na ratios of waters draining Himalayan silicate rocks, two critical parameters for calculation of CO2 consumption by silicate weathering in the Himalaya. The observed Ca/Na and Mg/Na ratios would produce slightly higher estimates of silicate weathering fluxes than previous studies. The geologic contrasts between the Seti and the Arun produce large differences in the 87Sr/86Sr ratio of each mainstem, unlike the major element chemistry. The Seti mainstem displays much higher 87Sr/86Sr ratios than the Arun mainstem, the opposite of the expected relationship since radiogenic silicate rocks of the Greater and Lesser Himalaya are so widely exposed along the Arun. 87Sr/86Sr ratios of the Arun mainstem never exceed 0.734 and show little downstream change as the mainstem passes through silicate rocks of the Greater and Lesser Himalaya. 87Sr/86Sr ratios of the Seti mainstem increase sharply from 0.725 to 0.785 when the river enters the belt of metacarbonate rocks of the northern Lesser Himalayan Sequence, a pattern also displayed by other Himalayan rivers such as the Kali Gandaki and Bhotse Khola. Metacarbonate rocks, including those of the Lesser Himalaya, are a major source of radiogenic Sr in modern Himalayan Rivers and probably have been key players in elevating marine 87Sr/86Sr ratios since the Early Miocene." @default.
- W2012183198 created "2016-06-24" @default.
- W2012183198 creator A5011934958 @default.
- W2012183198 creator A5030016629 @default.
- W2012183198 creator A5077491322 @default.
- W2012183198 date "2003-12-01" @default.
- W2012183198 modified "2023-10-14" @default.
- W2012183198 title "Silicate versus carbonate weathering in the Himalaya: a comparison of the Arun and Seti River watersheds" @default.
- W2012183198 cites W1517030034 @default.
- W2012183198 cites W1966360142 @default.
- W2012183198 cites W1973452830 @default.
- W2012183198 cites W1981675265 @default.
- W2012183198 cites W1984200080 @default.
- W2012183198 cites W1986043507 @default.
- W2012183198 cites W1988997369 @default.
- W2012183198 cites W1989182282 @default.
- W2012183198 cites W1989518329 @default.
- W2012183198 cites W1993280670 @default.
- W2012183198 cites W1999341427 @default.
- W2012183198 cites W1999924690 @default.
- W2012183198 cites W2005101902 @default.
- W2012183198 cites W2005550073 @default.
- W2012183198 cites W2009196217 @default.
- W2012183198 cites W2022683665 @default.
- W2012183198 cites W2025823008 @default.
- W2012183198 cites W2027514827 @default.
- W2012183198 cites W2030633486 @default.
- W2012183198 cites W2031763456 @default.
- W2012183198 cites W2059239101 @default.
- W2012183198 cites W2060359089 @default.
- W2012183198 cites W2071345686 @default.
- W2012183198 cites W2077890643 @default.
- W2012183198 cites W2084283421 @default.
- W2012183198 cites W2087411929 @default.
- W2012183198 cites W2102936785 @default.
- W2012183198 cites W2130840441 @default.
- W2012183198 cites W2154087253 @default.
- W2012183198 cites W2159630612 @default.
- W2012183198 doi "https://doi.org/10.1016/j.chemgeo.2002.05.002" @default.
- W2012183198 hasPublicationYear "2003" @default.
- W2012183198 type Work @default.
- W2012183198 sameAs 2012183198 @default.
- W2012183198 citedByCount "86" @default.
- W2012183198 countsByYear W20121831982013 @default.
- W2012183198 countsByYear W20121831982014 @default.
- W2012183198 countsByYear W20121831982015 @default.
- W2012183198 countsByYear W20121831982016 @default.
- W2012183198 countsByYear W20121831982017 @default.
- W2012183198 countsByYear W20121831982018 @default.
- W2012183198 countsByYear W20121831982019 @default.
- W2012183198 countsByYear W20121831982020 @default.
- W2012183198 countsByYear W20121831982021 @default.
- W2012183198 countsByYear W20121831982022 @default.
- W2012183198 countsByYear W20121831982023 @default.
- W2012183198 crossrefType "journal-article" @default.
- W2012183198 hasAuthorship W2012183198A5011934958 @default.
- W2012183198 hasAuthorship W2012183198A5030016629 @default.
- W2012183198 hasAuthorship W2012183198A5077491322 @default.
- W2012183198 hasConcept C122792734 @default.
- W2012183198 hasConcept C127313418 @default.
- W2012183198 hasConcept C17409809 @default.
- W2012183198 hasConcept C178790620 @default.
- W2012183198 hasConcept C185592680 @default.
- W2012183198 hasConcept C19320362 @default.
- W2012183198 hasConcept C199289684 @default.
- W2012183198 hasConcept C26687426 @default.
- W2012183198 hasConcept C2777335606 @default.
- W2012183198 hasConcept C2780191791 @default.
- W2012183198 hasConcept C2780659211 @default.
- W2012183198 hasConcept C40724407 @default.
- W2012183198 hasConcept C6494504 @default.
- W2012183198 hasConceptScore W2012183198C122792734 @default.
- W2012183198 hasConceptScore W2012183198C127313418 @default.
- W2012183198 hasConceptScore W2012183198C17409809 @default.
- W2012183198 hasConceptScore W2012183198C178790620 @default.
- W2012183198 hasConceptScore W2012183198C185592680 @default.
- W2012183198 hasConceptScore W2012183198C19320362 @default.
- W2012183198 hasConceptScore W2012183198C199289684 @default.
- W2012183198 hasConceptScore W2012183198C26687426 @default.
- W2012183198 hasConceptScore W2012183198C2777335606 @default.
- W2012183198 hasConceptScore W2012183198C2780191791 @default.
- W2012183198 hasConceptScore W2012183198C2780659211 @default.
- W2012183198 hasConceptScore W2012183198C40724407 @default.
- W2012183198 hasConceptScore W2012183198C6494504 @default.
- W2012183198 hasIssue "3-4" @default.
- W2012183198 hasLocation W20121831981 @default.
- W2012183198 hasOpenAccess W2012183198 @default.
- W2012183198 hasPrimaryLocation W20121831981 @default.
- W2012183198 hasRelatedWork W1517808550 @default.
- W2012183198 hasRelatedWork W2041596159 @default.
- W2012183198 hasRelatedWork W2061321139 @default.
- W2012183198 hasRelatedWork W2145614931 @default.
- W2012183198 hasRelatedWork W2375446597 @default.
- W2012183198 hasRelatedWork W2393245953 @default.
- W2012183198 hasRelatedWork W3204076726 @default.
- W2012183198 hasRelatedWork W4385840233 @default.
- W2012183198 hasRelatedWork W90724595 @default.
- W2012183198 hasRelatedWork W2308927750 @default.