Matches in SemOpenAlex for { <https://semopenalex.org/work/W2012184861> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W2012184861 endingPage "2954" @default.
- W2012184861 startingPage "2942" @default.
- W2012184861 abstract "The paper investigates an extension of Christoffel duality to a certain family of Sturmian words. Given an Christoffel prefix w of length N of an Sturmian word of slope g we associate a N-companion slope gN∗ such that the upper Sturmian word of slope gN∗ has a prefix w∗ of length N which is the upper Christoffel dual of w. Although this condition is satisfied by infinitely many slopes, we show that the companion slope gN∗ is an interesting and somewhat natural choice and we provide geometrical and music-theoretical motivations for its definition. In general, the second-order companion (gN∗)N∗=gN∗∗ does not coincide with the original g. We show that, given a rational number 0<MN<1, the map g→gN∗∗ has exactly one fixed point, ϕMN∈[0,1), called odd mirror number. We show that odd mirror numbers are Sturm numbers and their continued fraction expansion is purely periodic with palindromic periods of even length. The semi-periods are of odd length and form a binary tree in bijection to the Farey tree of ratios 0<MN<1. Its root is the singleton {2}, which represents the odd mirror number −1+82=[0;22¯]. The characteristic word cϕMN of slope ϕMN remains fixed under a standard morphism which can be computed from the semi-period of ϕMN. Finally, we prove that the characteristic word G(cϕMN) is a harmonic word. As a minor open question we ask for the properties of even mirror numbers. A final conjecture provides a proper word-theoretic meaning to the extended duality for odd mirror number slopes: given a characteristic word cϕMN, the succession of those letters which immediately precede the occurrences of the left special factor of length N coincides–up to letter exchange–with the G-image of the dual word cϕMN∗." @default.
- W2012184861 created "2016-06-24" @default.
- W2012184861 creator A5005001201 @default.
- W2012184861 creator A5011539368 @default.
- W2012184861 creator A5026862709 @default.
- W2012184861 date "2011-06-01" @default.
- W2012184861 modified "2023-09-30" @default.
- W2012184861 title "An extension of Christoffel duality to a subset of Sturm numbers and their characteristic words" @default.
- W2012184861 cites W1586417893 @default.
- W2012184861 cites W1974623598 @default.
- W2012184861 cites W1984589839 @default.
- W2012184861 cites W2029948740 @default.
- W2012184861 cites W2036769664 @default.
- W2012184861 cites W2049646746 @default.
- W2012184861 cites W2071556498 @default.
- W2012184861 cites W2130911730 @default.
- W2012184861 cites W2153797611 @default.
- W2012184861 cites W2206721074 @default.
- W2012184861 cites W2334330610 @default.
- W2012184861 cites W3242420 @default.
- W2012184861 cites W62113036 @default.
- W2012184861 cites W82544137 @default.
- W2012184861 doi "https://doi.org/10.1016/j.tcs.2010.12.060" @default.
- W2012184861 hasPublicationYear "2011" @default.
- W2012184861 type Work @default.
- W2012184861 sameAs 2012184861 @default.
- W2012184861 citedByCount "0" @default.
- W2012184861 crossrefType "journal-article" @default.
- W2012184861 hasAuthorship W2012184861A5005001201 @default.
- W2012184861 hasAuthorship W2012184861A5011539368 @default.
- W2012184861 hasAuthorship W2012184861A5026862709 @default.
- W2012184861 hasBestOaLocation W20121848611 @default.
- W2012184861 hasConcept C114614502 @default.
- W2012184861 hasConcept C118615104 @default.
- W2012184861 hasConcept C137212723 @default.
- W2012184861 hasConcept C199360897 @default.
- W2012184861 hasConcept C20080352 @default.
- W2012184861 hasConcept C202444582 @default.
- W2012184861 hasConcept C203492994 @default.
- W2012184861 hasConcept C24424167 @default.
- W2012184861 hasConcept C2524010 @default.
- W2012184861 hasConcept C2780990831 @default.
- W2012184861 hasConcept C33923547 @default.
- W2012184861 hasConcept C39613435 @default.
- W2012184861 hasConcept C41008148 @default.
- W2012184861 hasConcept C77850982 @default.
- W2012184861 hasConcept C90805587 @default.
- W2012184861 hasConcept C94375191 @default.
- W2012184861 hasConcept C97137487 @default.
- W2012184861 hasConceptScore W2012184861C114614502 @default.
- W2012184861 hasConceptScore W2012184861C118615104 @default.
- W2012184861 hasConceptScore W2012184861C137212723 @default.
- W2012184861 hasConceptScore W2012184861C199360897 @default.
- W2012184861 hasConceptScore W2012184861C20080352 @default.
- W2012184861 hasConceptScore W2012184861C202444582 @default.
- W2012184861 hasConceptScore W2012184861C203492994 @default.
- W2012184861 hasConceptScore W2012184861C24424167 @default.
- W2012184861 hasConceptScore W2012184861C2524010 @default.
- W2012184861 hasConceptScore W2012184861C2780990831 @default.
- W2012184861 hasConceptScore W2012184861C33923547 @default.
- W2012184861 hasConceptScore W2012184861C39613435 @default.
- W2012184861 hasConceptScore W2012184861C41008148 @default.
- W2012184861 hasConceptScore W2012184861C77850982 @default.
- W2012184861 hasConceptScore W2012184861C90805587 @default.
- W2012184861 hasConceptScore W2012184861C94375191 @default.
- W2012184861 hasConceptScore W2012184861C97137487 @default.
- W2012184861 hasIssue "27" @default.
- W2012184861 hasLocation W20121848611 @default.
- W2012184861 hasOpenAccess W2012184861 @default.
- W2012184861 hasPrimaryLocation W20121848611 @default.
- W2012184861 hasRelatedWork W1528953697 @default.
- W2012184861 hasRelatedWork W1531123283 @default.
- W2012184861 hasRelatedWork W2014927503 @default.
- W2012184861 hasRelatedWork W2093595243 @default.
- W2012184861 hasRelatedWork W2100041237 @default.
- W2012184861 hasRelatedWork W2258229947 @default.
- W2012184861 hasRelatedWork W2315751191 @default.
- W2012184861 hasRelatedWork W2900158650 @default.
- W2012184861 hasRelatedWork W2951823763 @default.
- W2012184861 hasRelatedWork W4221156696 @default.
- W2012184861 hasVolume "412" @default.
- W2012184861 isParatext "false" @default.
- W2012184861 isRetracted "false" @default.
- W2012184861 magId "2012184861" @default.
- W2012184861 workType "article" @default.