Matches in SemOpenAlex for { <https://semopenalex.org/work/W2012192788> ?p ?o ?g. }
- W2012192788 endingPage "155" @default.
- W2012192788 startingPage "129" @default.
- W2012192788 abstract "Velocity and droplet size characteristics of an unconfined quarl burner, of 16 mm quarl inlet diameter, have been measured with a phase-Doppler anemometer at a swirl number of about 0.29: the Reynolds number of the flow was 30000, based on the cold bulk velocity of 30.4 m s -1 and the hydraulic diameter. The atomization was achieved by shear between the swirling air and six radial kerosene jets and the resulting Sauter and arithmetic mean diameters were about 70 and 50 μm respectively after injection: velocity characteristics are presented for three 5 μm-wide size classes, 10, 30 and 60 μm. The flows correspond to no combustion and combustion of natural gas with a heat release of 8 kW supplemented by liquid kerosene flow rates sufficient to generate 21.6 and 37.2 kW : the gas equivalence ratio was 0.45 and atomized kerosene at two flow rates increased the overall ratios to 1.64 and 2.53. In non-reacting flow, droplets 30 μm and smaller are sufficiently small to be entrained by the mean air velocity towards the central part of the flow and into the swirl-induced recirculating air bubble. The 60 μm droplets are able to travel through the bubble uninfluenced by turbulent fluctuations in the air and are ‘centrifuged’ away from the centreline, through acquisition of a mean swirl velocity component, so that a large proportion of the kerosene volume flow rate lies at the edge of the swirling jet. Because larger droplets are centrifuged to the outer part of the flow, whereas the smaller are entrained towards the centreline, the Sauter and arithmetic mean diameters are, by 1.22 quarl exit diameters downstream of the quarl, approximately 65 and 36 μm at the outer part of the flow and 35 and 12 μm near the centreline in the inert flow. In reacting flow, droplets evaporate rapidly in regions of elevated temperatures and hence no droplets are found within the flame brush and recirculation region. The aerodynamic response of each size class to the air velocity is similar to inert flow so that the majority of the kerosene flow is centrifuged away from the flame. On exit from the quarl, the evaporation and burning rates cause the Sauter and arithmetic mean diameters to be about 70 and 50 μm and 60 and 30 μm at the inner and outer edges of the spray respectively. By 1.22 quarl exit-diameters from the exit of the quarl, the air motion entrains droplets smaller than about 30 μm towards the flame, at the inner edge of the spray, so that the Sauter and arithmetic mean diameters are 60 and 40 μm at the outer edge of the jet. There is comparatively little effect of changing the flow rate of kerosene because the combustion is controlled by the low available number of smaller droplets, although the Group combustion number corresponds to ‘cloud’ burning. The relative response of droplets to the mean and turbulent components of air motion, including the ‘centrifuging’ effect, can be scaled to other flows through dimensionless numbers defined in the text." @default.
- W2012192788 created "2016-06-24" @default.
- W2012192788 creator A5027758670 @default.
- W2012192788 creator A5047638023 @default.
- W2012192788 creator A5057131491 @default.
- W2012192788 date "1990-03-08" @default.
- W2012192788 modified "2023-10-13" @default.
- W2012192788 title "Velocity and size characteristics of liquid-fuelled flames stabilized by a swirl burner" @default.
- W2012192788 cites W1597359858 @default.
- W2012192788 cites W1973124268 @default.
- W2012192788 cites W1987445010 @default.
- W2012192788 cites W1989759389 @default.
- W2012192788 cites W2001847237 @default.
- W2012192788 cites W2006291394 @default.
- W2012192788 cites W2016299034 @default.
- W2012192788 cites W2016895521 @default.
- W2012192788 cites W2020285783 @default.
- W2012192788 cites W2026765000 @default.
- W2012192788 cites W2037713881 @default.
- W2012192788 cites W2046181186 @default.
- W2012192788 cites W2056209706 @default.
- W2012192788 cites W2063199626 @default.
- W2012192788 cites W2069694696 @default.
- W2012192788 cites W2074965756 @default.
- W2012192788 cites W2082745407 @default.
- W2012192788 cites W2091435197 @default.
- W2012192788 cites W2113983368 @default.
- W2012192788 cites W2506279401 @default.
- W2012192788 cites W2643235 @default.
- W2012192788 cites W2895846314 @default.
- W2012192788 cites W1546480122 @default.
- W2012192788 doi "https://doi.org/10.1098/rspa.1990.0028" @default.
- W2012192788 hasPublicationYear "1990" @default.
- W2012192788 type Work @default.
- W2012192788 sameAs 2012192788 @default.
- W2012192788 citedByCount "46" @default.
- W2012192788 countsByYear W20121927882012 @default.
- W2012192788 countsByYear W20121927882013 @default.
- W2012192788 countsByYear W20121927882014 @default.
- W2012192788 countsByYear W20121927882015 @default.
- W2012192788 countsByYear W20121927882016 @default.
- W2012192788 countsByYear W20121927882017 @default.
- W2012192788 countsByYear W20121927882018 @default.
- W2012192788 countsByYear W20121927882019 @default.
- W2012192788 countsByYear W20121927882021 @default.
- W2012192788 countsByYear W20121927882022 @default.
- W2012192788 countsByYear W20121927882023 @default.
- W2012192788 crossrefType "journal-article" @default.
- W2012192788 hasAuthorship W2012192788A5027758670 @default.
- W2012192788 hasAuthorship W2012192788A5047638023 @default.
- W2012192788 hasAuthorship W2012192788A5057131491 @default.
- W2012192788 hasConcept C105923489 @default.
- W2012192788 hasConcept C113196181 @default.
- W2012192788 hasConcept C119947313 @default.
- W2012192788 hasConcept C121332964 @default.
- W2012192788 hasConcept C157915830 @default.
- W2012192788 hasConcept C16644385 @default.
- W2012192788 hasConcept C172120300 @default.
- W2012192788 hasConcept C178790620 @default.
- W2012192788 hasConcept C182748727 @default.
- W2012192788 hasConcept C185592680 @default.
- W2012192788 hasConcept C192562407 @default.
- W2012192788 hasConcept C196558001 @default.
- W2012192788 hasConcept C20556612 @default.
- W2012192788 hasConcept C2778192735 @default.
- W2012192788 hasConcept C2779917225 @default.
- W2012192788 hasConcept C43617362 @default.
- W2012192788 hasConcept C56200935 @default.
- W2012192788 hasConcept C57879066 @default.
- W2012192788 hasConcept C83104080 @default.
- W2012192788 hasConcept C97355855 @default.
- W2012192788 hasConceptScore W2012192788C105923489 @default.
- W2012192788 hasConceptScore W2012192788C113196181 @default.
- W2012192788 hasConceptScore W2012192788C119947313 @default.
- W2012192788 hasConceptScore W2012192788C121332964 @default.
- W2012192788 hasConceptScore W2012192788C157915830 @default.
- W2012192788 hasConceptScore W2012192788C16644385 @default.
- W2012192788 hasConceptScore W2012192788C172120300 @default.
- W2012192788 hasConceptScore W2012192788C178790620 @default.
- W2012192788 hasConceptScore W2012192788C182748727 @default.
- W2012192788 hasConceptScore W2012192788C185592680 @default.
- W2012192788 hasConceptScore W2012192788C192562407 @default.
- W2012192788 hasConceptScore W2012192788C196558001 @default.
- W2012192788 hasConceptScore W2012192788C20556612 @default.
- W2012192788 hasConceptScore W2012192788C2778192735 @default.
- W2012192788 hasConceptScore W2012192788C2779917225 @default.
- W2012192788 hasConceptScore W2012192788C43617362 @default.
- W2012192788 hasConceptScore W2012192788C56200935 @default.
- W2012192788 hasConceptScore W2012192788C57879066 @default.
- W2012192788 hasConceptScore W2012192788C83104080 @default.
- W2012192788 hasConceptScore W2012192788C97355855 @default.
- W2012192788 hasIssue "1874" @default.
- W2012192788 hasLocation W20121927881 @default.
- W2012192788 hasOpenAccess W2012192788 @default.
- W2012192788 hasPrimaryLocation W20121927881 @default.
- W2012192788 hasRelatedWork W1967352542 @default.
- W2012192788 hasRelatedWork W2022431374 @default.
- W2012192788 hasRelatedWork W2046826993 @default.