Matches in SemOpenAlex for { <https://semopenalex.org/work/W2012202849> ?p ?o ?g. }
- W2012202849 endingPage "789" @default.
- W2012202849 startingPage "763" @default.
- W2012202849 abstract "Most models of high-alumina arc basalt petrogenesis rely heavily on the supposition that the abundances of certain trace elements, in particular the relatively unfractionated Rare Earth Element (REE) patterns and the unusually high concentrations of K, Rb, Sr, and Ba are incompatible with a garnet-bearing subducted oceanic crustal (quartz eclogite) source rock. We have carefully examined this apparently unequivocal evidence in light of recent progress on the physics of melt extraction and the heat transfer and mechanics of magma ascent. The weakest element of all trace element models involving a quartz eclogite source is the assumption that the element concentrations are fixed at the source and only later modified in the near-surface environment. We expand on such models by monitoring the concentrations of REE and major and trace elements during initial melting, ascent, and extraction of magma. This is done by combining calculated cooling curves for ascending magmatic bodies with high pressure phase equilibria. The amount that each phase contributes to the melt is monitored along with the composition of the melt and residual solids. With quartz eclogite, initial melting initiates gravitational instability of the entire source material (melt plus solids) before melt extraction can occur. During ascent of this mush, melting increases until the solids can be repacked to free the melt. This extraction takes place some 15–20 km above the slab, after about 50 per cent melting, at which point the melt has a pattern of REE and other trace element concentrations almost identical to those observed in high-alumina arc basalts, assuming an initial composition equivalent to altered oceanic crust plus 5 per cent pelagic sediment. Sr abundances are the only ones which are not well-matched by this process. The major element concentrations of the extracted melt also closely match those of high-alumina arc basalt. A similar, but less detailed evaluation of both fertile and depleted peridotite source rocks yields good agreement for the REE and other trace element concentrations assuming a LREE-enriched source rock strongly enriched in K, Rb, Sr, and Ba. Ni, Cr, and Co abundances are satisfied only through substantial low pressure fractionation of mafic phases, in particular olivine. Though not rigorously tested, such a process may be compatible with the observed major element concentrations of high-alumina basalt. However, the experimentally verified fact that high-alumina basalts could never have been in equilibrium with either an olivine-bearing magma or source rock eliminates this possibility altogether. Thus, the simultaneous consideration of the mechanics of ascent and melt extraction along with phase equilibria clearly shows that partial melting of quartz eclogite best satisfies the chemical constraints of major, trace, and REE characteristics of high-alumina arc basalts." @default.
- W2012202849 created "2016-06-24" @default.
- W2012202849 creator A5012670676 @default.
- W2012202849 creator A5033288824 @default.
- W2012202849 date "1986-08-01" @default.
- W2012202849 modified "2023-09-23" @default.
- W2012202849 title "On the Origin of High-Alumina Arc Basalt and the Mechanics of Melt Extraction" @default.
- W2012202849 cites W1170932629 @default.
- W2012202849 cites W1583155321 @default.
- W2012202849 cites W1768231140 @default.
- W2012202849 cites W1866460059 @default.
- W2012202849 cites W1969372192 @default.
- W2012202849 cites W1970390515 @default.
- W2012202849 cites W1970487785 @default.
- W2012202849 cites W1970758245 @default.
- W2012202849 cites W1973049424 @default.
- W2012202849 cites W1981385142 @default.
- W2012202849 cites W1985957692 @default.
- W2012202849 cites W1987941768 @default.
- W2012202849 cites W1988326132 @default.
- W2012202849 cites W1989480829 @default.
- W2012202849 cites W1991185897 @default.
- W2012202849 cites W1991664233 @default.
- W2012202849 cites W1993936218 @default.
- W2012202849 cites W1996301519 @default.
- W2012202849 cites W2003301530 @default.
- W2012202849 cites W2003603051 @default.
- W2012202849 cites W2003641336 @default.
- W2012202849 cites W2003747250 @default.
- W2012202849 cites W2005292145 @default.
- W2012202849 cites W2010987356 @default.
- W2012202849 cites W2012718531 @default.
- W2012202849 cites W2017793664 @default.
- W2012202849 cites W2023459818 @default.
- W2012202849 cites W2027862110 @default.
- W2012202849 cites W2028480661 @default.
- W2012202849 cites W2030785569 @default.
- W2012202849 cites W2031155817 @default.
- W2012202849 cites W2033401826 @default.
- W2012202849 cites W2037106619 @default.
- W2012202849 cites W2047172800 @default.
- W2012202849 cites W2050989113 @default.
- W2012202849 cites W2052170456 @default.
- W2012202849 cites W2052875168 @default.
- W2012202849 cites W2054061206 @default.
- W2012202849 cites W2058543257 @default.
- W2012202849 cites W2060400888 @default.
- W2012202849 cites W2063205632 @default.
- W2012202849 cites W2063401242 @default.
- W2012202849 cites W2070238133 @default.
- W2012202849 cites W2070290565 @default.
- W2012202849 cites W2071123824 @default.
- W2012202849 cites W2071766690 @default.
- W2012202849 cites W2073905559 @default.
- W2012202849 cites W2074129682 @default.
- W2012202849 cites W2074483305 @default.
- W2012202849 cites W2075305921 @default.
- W2012202849 cites W2082031187 @default.
- W2012202849 cites W2082257231 @default.
- W2012202849 cites W2087565358 @default.
- W2012202849 cites W2091408979 @default.
- W2012202849 cites W2099311517 @default.
- W2012202849 cites W2110681798 @default.
- W2012202849 cites W2120027408 @default.
- W2012202849 cites W2125478780 @default.
- W2012202849 cites W2125860465 @default.
- W2012202849 cites W2133979455 @default.
- W2012202849 cites W2137662082 @default.
- W2012202849 cites W2143836610 @default.
- W2012202849 cites W2145191782 @default.
- W2012202849 cites W2181969104 @default.
- W2012202849 cites W2270759184 @default.
- W2012202849 cites W2321981993 @default.
- W2012202849 cites W2344085937 @default.
- W2012202849 cites W2560723935 @default.
- W2012202849 cites W2570821287 @default.
- W2012202849 cites W2595079669 @default.
- W2012202849 doi "https://doi.org/10.1093/petrology/27.4.763" @default.
- W2012202849 hasPublicationYear "1986" @default.
- W2012202849 type Work @default.
- W2012202849 sameAs 2012202849 @default.
- W2012202849 citedByCount "134" @default.
- W2012202849 countsByYear W20122028492012 @default.
- W2012202849 countsByYear W20122028492013 @default.
- W2012202849 countsByYear W20122028492014 @default.
- W2012202849 countsByYear W20122028492015 @default.
- W2012202849 countsByYear W20122028492016 @default.
- W2012202849 countsByYear W20122028492017 @default.
- W2012202849 countsByYear W20122028492018 @default.
- W2012202849 countsByYear W20122028492019 @default.
- W2012202849 countsByYear W20122028492020 @default.
- W2012202849 countsByYear W20122028492021 @default.
- W2012202849 countsByYear W20122028492023 @default.
- W2012202849 crossrefType "journal-article" @default.
- W2012202849 hasAuthorship W2012202849A5012670676 @default.
- W2012202849 hasAuthorship W2012202849A5033288824 @default.
- W2012202849 hasConcept C113740112 @default.
- W2012202849 hasConcept C120806208 @default.