Matches in SemOpenAlex for { <https://semopenalex.org/work/W2012241493> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W2012241493 endingPage "364" @default.
- W2012241493 startingPage "352" @default.
- W2012241493 abstract "When the Mach number tends to zero the compressible Navier–Stokes equations converge to the incompressible Navier–Stokes equations, under the restrictions of constant density, constant temperature and no compression from the boundary. This is a singular limit in which the pressure of the compressible equations converges at leading order to a constant thermodynamic background pressure, while a hydrodynamic pressure term appears in the incompressible equations as a Lagrangian multiplier to establish the divergence-free condition for the velocity. In this paper we consider the more general case in which variable density, variable temperature and heat transfer are present, while the Mach number is small. We discuss first the limit equations for this case, when the Mach number tends to zero. The introduction of a pressure splitting into a thermodynamic and a hydrodynamic part allows the extension of numerical methods to the zero Mach number equations in these non-standard situations. The solution of these equations is then used as the state of expansion extending the expansion about incompressible flow proposed by Hardin and Pope [J.C. Hardin, D.S. Pope, An acoustic/viscous splitting technique for computational aeroacoustics, Theor. Comput. Fluid Dyn. 6 (1995) 323–340]. The resulting linearized equations state a mathematical model for the generation and propagation of acoustic waves in this more general low Mach number regime and may be used within a hybrid aeroacoustic approach." @default.
- W2012241493 created "2016-06-24" @default.
- W2012241493 creator A5012579504 @default.
- W2012241493 creator A5018746315 @default.
- W2012241493 creator A5051559583 @default.
- W2012241493 date "2007-05-01" @default.
- W2012241493 modified "2023-10-18" @default.
- W2012241493 title "Linearized acoustic perturbation equations for low Mach number flow with variable density and temperature" @default.
- W2012241493 cites W1984280619 @default.
- W2012241493 cites W1994056581 @default.
- W2012241493 cites W2002231150 @default.
- W2012241493 cites W2008182598 @default.
- W2012241493 cites W2010258025 @default.
- W2012241493 cites W2010389998 @default.
- W2012241493 cites W2011182226 @default.
- W2012241493 cites W2022075376 @default.
- W2012241493 cites W2030366749 @default.
- W2012241493 cites W2046625524 @default.
- W2012241493 cites W2068789221 @default.
- W2012241493 cites W2072755857 @default.
- W2012241493 cites W2075089623 @default.
- W2012241493 cites W2081476622 @default.
- W2012241493 cites W2085651252 @default.
- W2012241493 cites W2128536106 @default.
- W2012241493 cites W2138908501 @default.
- W2012241493 doi "https://doi.org/10.1016/j.jcp.2007.02.022" @default.
- W2012241493 hasPublicationYear "2007" @default.
- W2012241493 type Work @default.
- W2012241493 sameAs 2012241493 @default.
- W2012241493 citedByCount "65" @default.
- W2012241493 countsByYear W20122414932012 @default.
- W2012241493 countsByYear W20122414932013 @default.
- W2012241493 countsByYear W20122414932014 @default.
- W2012241493 countsByYear W20122414932015 @default.
- W2012241493 countsByYear W20122414932016 @default.
- W2012241493 countsByYear W20122414932017 @default.
- W2012241493 countsByYear W20122414932018 @default.
- W2012241493 countsByYear W20122414932019 @default.
- W2012241493 countsByYear W20122414932020 @default.
- W2012241493 countsByYear W20122414932021 @default.
- W2012241493 countsByYear W20122414932022 @default.
- W2012241493 countsByYear W20122414932023 @default.
- W2012241493 crossrefType "journal-article" @default.
- W2012241493 hasAuthorship W2012241493A5012579504 @default.
- W2012241493 hasAuthorship W2012241493A5018746315 @default.
- W2012241493 hasAuthorship W2012241493A5051559583 @default.
- W2012241493 hasConcept C121332964 @default.
- W2012241493 hasConcept C134306372 @default.
- W2012241493 hasConcept C165231844 @default.
- W2012241493 hasConcept C21018558 @default.
- W2012241493 hasConcept C2781278361 @default.
- W2012241493 hasConcept C33923547 @default.
- W2012241493 hasConcept C5192115 @default.
- W2012241493 hasConcept C57879066 @default.
- W2012241493 hasConcept C74650414 @default.
- W2012241493 hasConcept C84655787 @default.
- W2012241493 hasConceptScore W2012241493C121332964 @default.
- W2012241493 hasConceptScore W2012241493C134306372 @default.
- W2012241493 hasConceptScore W2012241493C165231844 @default.
- W2012241493 hasConceptScore W2012241493C21018558 @default.
- W2012241493 hasConceptScore W2012241493C2781278361 @default.
- W2012241493 hasConceptScore W2012241493C33923547 @default.
- W2012241493 hasConceptScore W2012241493C5192115 @default.
- W2012241493 hasConceptScore W2012241493C57879066 @default.
- W2012241493 hasConceptScore W2012241493C74650414 @default.
- W2012241493 hasConceptScore W2012241493C84655787 @default.
- W2012241493 hasIssue "1" @default.
- W2012241493 hasLocation W20122414931 @default.
- W2012241493 hasOpenAccess W2012241493 @default.
- W2012241493 hasPrimaryLocation W20122414931 @default.
- W2012241493 hasRelatedWork W1513855818 @default.
- W2012241493 hasRelatedWork W1629043906 @default.
- W2012241493 hasRelatedWork W1982072888 @default.
- W2012241493 hasRelatedWork W2001483629 @default.
- W2012241493 hasRelatedWork W2108236244 @default.
- W2012241493 hasRelatedWork W2127732705 @default.
- W2012241493 hasRelatedWork W2963059605 @default.
- W2012241493 hasRelatedWork W3124545945 @default.
- W2012241493 hasRelatedWork W3182950612 @default.
- W2012241493 hasRelatedWork W2525531329 @default.
- W2012241493 hasVolume "224" @default.
- W2012241493 isParatext "false" @default.
- W2012241493 isRetracted "false" @default.
- W2012241493 magId "2012241493" @default.
- W2012241493 workType "article" @default.