Matches in SemOpenAlex for { <https://semopenalex.org/work/W2012248317> ?p ?o ?g. }
- W2012248317 endingPage "557" @default.
- W2012248317 startingPage "553" @default.
- W2012248317 abstract "Promoter-specific initiation of transcription by RNA polymerase II (Pol II) requires both gene-specific regulators and general transcription factors (GTFs: TFIIB, -D, -E, -F, and -H) (Woychik and Hampsey 2002Woychik N.A. Hampsey M. Cell. 2002; 108: 453-463Abstract Full Text Full Text PDF PubMed Scopus (203) Google Scholar). Biochemical and genetic studies in yeast led to the discovery of a Mediator (MED) complex of 20 protein subunits, linking transcriptional regulators to Pol II and GTFs (Flanagan et al. 1991Flanagan P.M. Kelleher 3rd, R.J. Sayre M.H. Tschochner H. Kornberg R.D. Nature. 1991; 350: 436-438Crossref PubMed Scopus (253) Google Scholar, Kelleher et al. 1990Kelleher 3rd, R.J. Flanagan P.M. Kornberg R.D. Cell. 1990; 61: 1209-1215Abstract Full Text PDF PubMed Scopus (283) Google Scholar, Kim et al. 1994Kim Y.J. Bjorklund S. Li Y. Sayre M.H. Kornberg R.D. Cell. 1994; 77: 599-608Abstract Full Text PDF PubMed Scopus (872) Google Scholar). In vitro, Mediator stimulates basal transcription, enables activated transcription, and relieves the interfering effect (Gill and Ptashne 1988Gill G. Ptashne M. Nature. 1988; 334: 721-724Crossref PubMed Scopus (489) Google Scholar) of a strong transcriptional activator (Kim et al. 1994Kim Y.J. Bjorklund S. Li Y. Sayre M.H. Kornberg R.D. Cell. 1994; 77: 599-608Abstract Full Text PDF PubMed Scopus (872) Google Scholar). The identification of Mediator subunits revealed that many were products of previous genetic screens (Carlson 1997Carlson M. Annu. Rev. Cell Dev. Biol. 1997; 13: 1-23Crossref PubMed Scopus (179) Google Scholar, Lee and Young 2000Lee T.I. Young R.A. Annu. Rev. Genet. 2000; 34: 77-137Crossref PubMed Scopus (611) Google Scholar, Myers and Kornberg 2000Myers L.C. Kornberg R.D. Annu. Rev. Biochem. 2000; 69: 729-749Crossref PubMed Scopus (316) Google Scholar, Nonet and Young 1989Nonet M.L. Young R.A. Genetics. 1989; 123: 715-724Crossref PubMed Google Scholar, Suzuki et al. 1988Suzuki Y. Nogi Y. Abe A. Fukasawa T. Mol. Cell. Biol. 1988; 8: 4991-4999Crossref PubMed Scopus (111) Google Scholar), and some were shown to interact directly with Pol II and GTFs (Koleske et al. 1992Koleske A.J. Buratowski S. Nonet M. Young R.A. Cell. 1992; 69: 883-894Abstract Full Text PDF PubMed Scopus (139) Google Scholar, Myers et al. 1998Myers L.C. Gustafsson C.M. Bushnell D.A. Lui M. Erdjument-Bromage H. Tempst P. Kornberg R.D. Genes Dev. 1998; 12: 45-54Crossref PubMed Scopus (250) Google Scholar, Sakurai and Fukasawa 2000Sakurai H. Fukasawa T. J. Biol. Chem. 2000; 275: 37251-37256Crossref PubMed Scopus (27) Google Scholar, Thompson et al. 1993Thompson C.M. Koleske A.J. Chao D.M. Young R.A. Cell. 1993; 73: 1361-1375Abstract Full Text PDF PubMed Scopus (385) Google Scholar). Further genetic studies demonstrated the role of Mediator in repression as well as activation (Li et al. 1995Li Y. Bjorklund S. Jiang Y.W. Kim Y.J. Lane W.S. Stillman D.J. Kornberg R.D. Proc. Natl. Acad. Sci. USA. 1995; 92: 10864-10868Crossref PubMed Scopus (216) Google Scholar, Song et al. 1996Song W. Treich I. Qian N. Kuchin S. Carlson M. Mol. Cell. Biol. 1996; 16: 115-120Crossref PubMed Scopus (110) Google Scholar), and established the relevance of Mediator to transcription control in vivo (Barberis et al. 1995Barberis A. Pearlberg J. Simkovich N. Farrell S. Reinagel P. Bamdad C. Sigal G. Ptashne M. Cell. 1995; 81: 359-368Abstract Full Text PDF PubMed Scopus (234) Google Scholar, Holstege et al. 1998Holstege F.C. Jennings E.G. Wyrick J.J. Lee T.I. Hengartner C.J. Green M.R. Golub T.R. Lander E.S. Young R.A. Cell. 1998; 95: 717-728Abstract Full Text Full Text PDF PubMed Scopus (1575) Google Scholar, Thompson and Young 1995Thompson C.M. Young R.A. Natl. Acad. Sci. USA. 1995; 92: 4587-4590Crossref PubMed Scopus (206) Google Scholar). For some time there was no evidence for conservation of yeast Mediator through evolution. However, independent biochemical and structural studies of coactivators that, in most cases, were initially identified in functional assays have revealed true counterparts in other fungi and in higher organisms (Asturias et al. 1999Asturias F.J. Jiang Y.W. Myers L.C. Gustafsson C.M. Kornberg R.D. Science. 1999; 283: 985-987Crossref PubMed Scopus (197) Google Scholar, Boyer et al. 1999Boyer T.G. Martin M.E. Lees E. Ricciardi R.P. Berk A.J. Nature. 1999; 399: 276-279Crossref PubMed Scopus (250) Google Scholar, Chao et al. 1996Chao D.M. Gadbois E.L. Murray P.J. Anderson S.F. Sonu M.S. Parvin J.D. Young R.A. Nature. 1996; 380: 82-85Crossref PubMed Scopus (126) Google Scholar, Fondell et al. 1996Fondell J.D. Ge H. Roeder R.G. Proc. Natl. Acad. Sci. USA. 1996; 93: 8329-8333Crossref PubMed Scopus (454) Google Scholar, Gu et al. 1999Gu W. Malik S. Ito M. Yuan C.X. Fondell J.D. Zhang X. Martinez E. Qin J. Roeder R.G. Mol. Cell. 1999; 3: 97-108Abstract Full Text Full Text PDF PubMed Scopus (239) Google Scholar, Gu et al. 2002Gu J.Y. Park J.M. Song E.J. Mizuguchi G. Yoon J.H. Kim-Ha J. Lee K.J. Kim Y.J. J. Biol. Chem. 2002; 277: 27154-27161Crossref PubMed Scopus (18) Google Scholar, Ito et al. 1999Ito M. Yuan C.X. Malik S. Gu W. Fondell J.D. Yamamura S. Fu Z.Y. Zhang X. Qin J. Roeder R.G. Mol. Cell. 1999; 3: 361-370Abstract Full Text Full Text PDF PubMed Scopus (353) Google Scholar, Jiang et al. 1998Jiang Y.W. Veschambre P. Erdjument-Bromage H. Tempst P. Conaway J.W. Conaway R.C. Kornberg R.D. Proc. Natl. Acad. Sci. USA. 1998; 95: 8538-8543Crossref PubMed Scopus (255) Google Scholar, Kretzschmar et al. 1994Kretzschmar M. Stelzer G. Roeder R.G. Meisterernst M. Mol. Cell. Biol. 1994; 14: 3927-3937Crossref PubMed Scopus (55) Google Scholar, Kwon et al. 1999Kwon J.Y. Park J.M. Gim B.S. Han S.J. Lee J. Kim Y.J. Proc. Natl. Acad. Sci. USA. 1999; 96: 14990-14995Crossref PubMed Scopus (52) Google Scholar, Malik et al. 2000Malik S. Gu W. Wu W. Qin J. Roeder R.G. Mol. Cell. 2000; 5: 753-760Abstract Full Text Full Text PDF PubMed Scopus (114) Google Scholar, Meisterernst et al. 1991Meisterernst M. Roy A.L. Lieu H.M. Roeder R.G. Cell. 1991; 66: 981-993Abstract Full Text PDF PubMed Scopus (225) Google Scholar, Naar et al. 1999Naar A.M. Beaurang P.A. Zhou S. Abraham S. Solomon W. Tjian R. Nature. 1999; 398: 828-832Crossref PubMed Scopus (367) Google Scholar, Park et al. 2001Park J.M. Gim B.S. Kim J.M. Yoon J.H. Kim H.S. Kang J.G. Kim Y.J. Mol. Cell. Biol. 2001; 21: 2312-2323Crossref PubMed Scopus (53) Google Scholar, Rachez et al. 1999Rachez C. Lemon B.D. Suldan Z. Bromleigh V. Gamble M. Naar A.M. Erdjument-Bromage H. Tempst P. Freedman L.P. Nature. 1999; 398: 824-828Crossref PubMed Scopus (619) Google Scholar, Ryu et al. 1999Ryu S. Zhou S. Ladurner A.G. Tjian R. Nature. 1999; 397: 446-450Crossref PubMed Scopus (296) Google Scholar, Spahr et al. 2001Spahr H. Samuelsen C.O. Baraznenok V. Ernest I. Huylebroeck D. Remacle J.E. Samuelsson T. Kieselbach T. Holmberg S. Gustafsson C.M. Proc. Natl. Acad. Sci. USA. 2001; 98: 11985-11990Crossref PubMed Scopus (33) Google Scholar, Sun et al. 1998Sun X. Zhang Y. Cho H. Rickert P. Lees E. Lane W. Reinberg D. Mol. Cell. 1998; 2: 213-222Abstract Full Text Full Text PDF PubMed Scopus (197) Google Scholar). In mammals, the positive cofactor (PC2) component of the USA coactivator activity (Kretzschmar et al. 1994Kretzschmar M. Stelzer G. Roeder R.G. Meisterernst M. Mol. Cell. Biol. 1994; 14: 3927-3937Crossref PubMed Scopus (55) Google Scholar, Meisterernst et al. 1991Meisterernst M. Roy A.L. Lieu H.M. Roeder R.G. Cell. 1991; 66: 981-993Abstract Full Text PDF PubMed Scopus (225) Google Scholar) proved to be a Mediator-related complex (Malik et al. 2000Malik S. Gu W. Wu W. Qin J. Roeder R.G. Mol. Cell. 2000; 5: 753-760Abstract Full Text Full Text PDF PubMed Scopus (114) Google Scholar). Similarly, the human TRAP complex, first identified as a discrete group of thyroid hormone receptor-associated polypeptides with a potent coactivator activity (Fondell et al. 1996Fondell J.D. Ge H. Roeder R.G. Proc. Natl. Acad. Sci. USA. 1996; 93: 8329-8333Crossref PubMed Scopus (454) Google Scholar), also was found to represent a Mediator equivalent (Ito et al. 1999Ito M. Yuan C.X. Malik S. Gu W. Fondell J.D. Yamamura S. Fu Z.Y. Zhang X. Qin J. Roeder R.G. Mol. Cell. 1999; 3: 361-370Abstract Full Text Full Text PDF PubMed Scopus (353) Google Scholar). Other metazoan Mediator-related complexes have been denoted ARC, CRSP, or DRIP owing to interactions with other nuclear receptors as well as diverse transcriptional activators (Mittler et al. 2003Mittler G. Stuhler T. Santolin L. Uhlmann T. Kremmer E. Lottspeich F. Berti L. Meisterernst M. EMBO J. 2003; 22: 6494-6504Crossref PubMed Scopus (110) Google Scholar, Naar et al. 1999Naar A.M. Beaurang P.A. Zhou S. Abraham S. Solomon W. Tjian R. Nature. 1999; 398: 828-832Crossref PubMed Scopus (367) Google Scholar, Rachez et al. 1999Rachez C. Lemon B.D. Suldan Z. Bromleigh V. Gamble M. Naar A.M. Erdjument-Bromage H. Tempst P. Freedman L.P. Nature. 1999; 398: 824-828Crossref PubMed Scopus (619) Google Scholar, Ryu et al. 1999Ryu S. Zhou S. Ladurner A.G. Tjian R. Nature. 1999; 397: 446-450Crossref PubMed Scopus (296) Google Scholar, Yang et al. 2004Yang F. DeBeaumont R. Zhou S. Naar A.M. Proc. Natl. Acad. Sci. USA. 2004; 101: 2339-2344Crossref PubMed Scopus (99) Google Scholar). A systematic analysis of proteins present in the most highly purified mammalian complexes by tandem mass spectrometry led to the identification of up to 30 distinct MED subunits (MEDs) (Sato et al. 2003aSato S. Tomomori-Sato C. Banks C.A. Parmely T.J. Sorokina I. Brower C.S. Conaway R.C. Conaway J.W. J. Biol. Chem. 2003; 278 (a): 49671-49674Crossref PubMed Scopus (43) Google Scholar, Tomomori-Sato et al. 2004Tomomori-Sato C. Sato S. Parmely T.J. Banks C.A. Sorokina I. Florens L. Zybailov B. Washburn M.P. Brower C.S. Conaway R.C. et al.J. Biol. Chem. 2004; 279: 5846-5851Crossref PubMed Scopus (22) Google Scholar). Initial studies identified 8 MEDs conserved from fungi to humans: Med6/Pmc5/ARC/DRIP33/TRAP32, Med7/ARC/DRIP/TRAP34/CRSP33, Nut2/Med10/TRAP15, Srb7/SURB7/TRAP19, Rgr1/Pmc1/ARC/CRSP/DRIP150/TRAP170, Soh1/TRAP18 (note that Soh1 has not been yet identified in purified yeast Mediator), Srb10/Ssn3/Ume5/Gig2/Nut7/Rye5/CDK8, and Srb11/Ssn8/Ume3/Gig3/Nut9/Rye2/Cyclin C) (for reviews see Malik and Roeder 2000Malik S. Roeder R.G. Trends Biochem. Sci. 2000; 25: 277-283Abstract Full Text Full Text PDF PubMed Scopus (302) Google Scholar, Rachez and Freedman 2001Rachez C. Freedman L.P. Curr. Opin. Cell Biol. 2001; 13: 274-280Crossref PubMed Scopus (225) Google Scholar). However, extensive cross-species comparisons in several labs have more recently detected metazoan counterparts for nearly all yeast MEDs (see Table 1) (Borggrefe et al. 2002Borggrefe T. Davis R. Erdjument-Bromage H. Tempst P. Kornberg R.D. J. Biol. Chem. 2002; 277: 44202-44207Crossref PubMed Scopus (127) Google Scholar, Boube et al. 2002Boube M. Joulia L. Cribbs D.L. Bourbon H.M. Cell. 2002; 110: 143-151Abstract Full Text Full Text PDF PubMed Scopus (207) Google Scholar, Gustafsson and Samuelsson 2001Gustafsson C.M. Samuelsson T. Mol. Microbiol. 2001; 41: 1-8Crossref PubMed Scopus (26) Google Scholar, Samuelsen et al. 2003Samuelsen C.O. Baraznenok V. Khorosjutina O. Spahr H. Kieselbach T. Holmberg S. Gustafsson C.M. Proc. Natl. Acad. Sci. USA. 2003; 100: 6422-6427Crossref PubMed Scopus (98) Google Scholar, Sato et al. 2003bSato S. Tomomori-Sato C. Banks C.A. Sorokina I. Parmely T.J. Kong S.E. Jin J. Cai Y. Lane W.S. Brower C.S. et al.J. Biol. Chem. 2003; 278 (b): 15123-15127Crossref PubMed Scopus (44) Google Scholar, Spahr et al. 2001Spahr H. Samuelsen C.O. Baraznenok V. Ernest I. Huylebroeck D. Remacle J.E. Samuelsson T. Kieselbach T. Holmberg S. Gustafsson C.M. Proc. Natl. Acad. Sci. USA. 2001; 98: 11985-11990Crossref PubMed Scopus (33) Google Scholar, Tomomori-Sato et al. 2004Tomomori-Sato C. Sato S. Parmely T.J. Banks C.A. Sorokina I. Florens L. Zybailov B. Washburn M.P. Brower C.S. Conaway R.C. et al.J. Biol. Chem. 2004; 279: 5846-5851Crossref PubMed Scopus (22) Google Scholar). Further bioinformatics analyses and functional studies have revealed that the human MEDs ARC105 and yeast Gal11 harbor an activator-targeted domain related to the KIX domain found in the CBP/p300 co-activators, suggesting that ARC105 and Gal11 are evolutionarily related (Novatchkova and Eisenhaber 2004Novatchkova M. Eisenhaber F. Curr. Biol. 2004; 14: R54-R55Abstract Full Text Full Text PDF PubMed Scopus (31) Google Scholar; A.M.N., unpublished data). The time now seems right to establish a unified MED nomenclature in order to enhance understanding of the scientific literature by a wide audience and to aid cross-species comparisons and proper annotation of sequence databases.Table 1New Nomenclature for MED Subunits Including the Corresponding Known or Predicted Orthologs and ParalogsC. elegansH. sapiensdAcronyms given to MEDs identified from various mammalian MED-like complexes (Malik and Roeder, 2000). Many of the components listed under Others recently have been found in both the larger and smaller complexes; however, the MED12, MED13, CDK8, and CycC components clearly are not present in the smaller complexes, consistent with their absence in a subpopulation of yeast Mediator complexes.New nameS. cerevisiaeaFrom SGD.S. pombePrevious namebFrom WormBase.New nameD. melanogastercFrom FlyBase.TRAP/SMCCARC/DRIPCRSPPC2OTHERSMED1Med1Pmc2SOP-3*MDT-1.1Trap220*TRAP220ARC/DRIP205CRSP200TRAP220PBPMED1LT23C6.1*MDT-1.2MED2Med2MED3Pgd1/Hrs1/Med3MED4Med4Pmc4/SpMed4ZK546.13*MDT-4Trap36TRAP36ARC/DRIP36TRAP36p34MED5Nut1MED6Med6Pmc5/SpMed6LET-425/MED-6MDT-6Med6hMed6ARC/DRIP33hMed6p32MED7Med7SpMed7LET-49/MED-7MDT-7Med7*hMed7ARC/DRIP34CRSP33hMed7p36MED8Med8Sep15/SpMed8Y62F5A.1b*MDT-8Arc32*ARC32mMed8MED9Cse2/Med9CG5134*Med25MED10Nut2/Med10SpNut2T09A5.6MDT-10Nut2*hNut2hMed10hNut2MED11Med11R144.9*MDT-11Med21HSPC296MED12Srb8SpSrb8DPY-22/SOP-1*MDT-12Kto*TRAP230ARC/DRIP240MED12LTRALPUSH*MED13Ssn2/Srb9SpTrap240LET-19*MDT-13Skd/Pap/Bli*TRAP240ARC/DRIP250MED13LPROSIT240MED14Rgr1Pmc1/SpRgr1RGR-1*MDT-14Trap170TRAP170ARC/DRIP150CRSP150TRAP170p110MED15Gal11SpGal11*R12B2.5b*MDT-15Arc105*ARC105PCQAPTIG-1MED16Sin4Trap95*TRAP95DRIP92TRAP95p96bMED17Srb4SpSrb4Y113G7B.18*MDT-17Trap80TRAP80ARC/DRIP77CRSP77TRAP80p78MED18Srb5Pmc6/Sep11C55B7.9*MDT-18p28/CG14802p28bMED19Rox3SpRox3Y71H2B.6*MDT-19CG5546*LCMR1MED20Srb2SPAC17G8.05*Y104H12D.1*MDT-20TrfphTRFPhTRFPp28aMED21Srb7SpSrb7C24H11.9*MDT-21Trap19hSrb7hSrb7hSrb7p21MED22Srb6SpSrb6ZK970.3*MDT-22Med24Surf5MED23SUR-2*MDT-23Trap150β*TRAP150βARC/DRIP130CRSP130TRAP150βhSur2MED24Trap100*TRAP100ARC/DRIP100CRSP100TRAP100MED25Arc92*ARC92ACID1MED26Arc70*ARC70CRSP70MED27Pmc3T18H9.6*MDT-27Trap37*TRAP37CRSP34TRAP37MED28W01A8.1*MDT-28Med23Fksg20MED29K08E3.8*MDT-29Intersex*HintersexMED30Trap25TRAP25MED31Soh1*SpSoh1/Sep10*F32H2.2*MDT-31Trap18hSoh1hSoh1CDK8Srb10/Ssn3/Ume5SpSrb10CDK-8*Cdk8hSrb10CDK8CycCSrb11/Ssn8/Ume3SpSrb11H14E04.5*CIC-1CycChSrb11CycCAsterisks indicate that the corresponding proteins have not yet been identified in purified MED complexes.a From SGD.b From WormBase.c From FlyBase.d Acronyms given to MEDs identified from various mammalian MED-like complexes Malik and Roeder 2000Malik S. Roeder R.G. Trends Biochem. Sci. 2000; 25: 277-283Abstract Full Text Full Text PDF PubMed Scopus (302) Google Scholar. Many of the components listed under Others recently have been found in both the larger and smaller complexes; however, the MED12, MED13, CDK8, and CycC components clearly are not present in the smaller complexes, consistent with their absence in a subpopulation of yeast Mediator complexes. Open table in a new tab Asterisks indicate that the corresponding proteins have not yet been identified in purified MED complexes. The unified nomenclature, shown in Table 1, is based on the following considerations:1.The new nomenclature complies with guidelines endorsed by the Saccharomyces Genome Database (SGD), the FlyBase and WormBase resources, and the human HUGO Gene Nomenclature Committees.2.MED is the most explicit acronym.3.This nomenclature acknowledges the discovery of MED complexes in yeast.4.In light of point 3, the original yeast MEDs will retain their names (MED1-11; note that the MED5 acronym will replace Nut1).5.The remaining yeast MEDs will be given names starting from MED12, in order of decreasing conceptual molecular weights deduced from primary sequences.6.MEDs found outside budding yeast will be given names starting from MED23 in order of decreasing calculated molecular weights (based on the human protein). At present, this list extends to MED31.7.Future bona fide new MED components will be assigned numbers starting from MED32.8.The general nomenclature will employ CDK8 and CycC, as the CDK-cyclin couple is readily identifiable for a wide scientific audience.9.Except for the specific case of C. elegans (see point 10), paralogs in the same organism will be termed MED-like, e.g., MED12L in humans.10.C. elegans MEDs will retain the specific nomenclature already adopted by WormBase, the MED acronym being used for another gene category. Thus MDT-6 (for eiaor-6) replaces MED6, but the proposed numbering from 1 to 31 would be retained. In addition, following usual recommendations in this organism, the two MED1 paralogs would be called MDT-1.1 and MDT-1.2. We believe the relative simplicity of the new, common nomenclature will expedite functional comparisons in different species, while remaining flexible enough to accommodate additional species-specific MEDs as they arise. Some uncertainties persist concerning the assignments of orthologous subunits, and the nomenclature can be updated if new data so require. To facilitate communication between researchers working inside and outside of the transcription field, we recommend that this numbering system be used in all future publications concerning Mediator complexes." @default.
- W2012248317 created "2016-06-24" @default.
- W2012248317 creator A5000021060 @default.
- W2012248317 creator A5004096220 @default.
- W2012248317 creator A5006284228 @default.
- W2012248317 creator A5007755251 @default.
- W2012248317 creator A5009791569 @default.
- W2012248317 creator A5014022141 @default.
- W2012248317 creator A5016384926 @default.
- W2012248317 creator A5023251641 @default.
- W2012248317 creator A5024928773 @default.
- W2012248317 creator A5025297651 @default.
- W2012248317 creator A5025361287 @default.
- W2012248317 creator A5025993887 @default.
- W2012248317 creator A5030871402 @default.
- W2012248317 creator A5033005779 @default.
- W2012248317 creator A5033567185 @default.
- W2012248317 creator A5033624132 @default.
- W2012248317 creator A5036409925 @default.
- W2012248317 creator A5040779201 @default.
- W2012248317 creator A5040925674 @default.
- W2012248317 creator A5041341228 @default.
- W2012248317 creator A5042514210 @default.
- W2012248317 creator A5042660745 @default.
- W2012248317 creator A5043281613 @default.
- W2012248317 creator A5046767088 @default.
- W2012248317 creator A5049417333 @default.
- W2012248317 creator A5049465163 @default.
- W2012248317 creator A5050951546 @default.
- W2012248317 creator A5051005226 @default.
- W2012248317 creator A5052555731 @default.
- W2012248317 creator A5054486813 @default.
- W2012248317 creator A5055105366 @default.
- W2012248317 creator A5059784163 @default.
- W2012248317 creator A5060183257 @default.
- W2012248317 creator A5060208809 @default.
- W2012248317 creator A5063736524 @default.
- W2012248317 creator A5066902283 @default.
- W2012248317 creator A5072166104 @default.
- W2012248317 creator A5072270200 @default.
- W2012248317 creator A5077721033 @default.
- W2012248317 creator A5079398715 @default.
- W2012248317 creator A5082391932 @default.
- W2012248317 creator A5083029357 @default.
- W2012248317 creator A5088001169 @default.
- W2012248317 creator A5088499932 @default.
- W2012248317 creator A5089479974 @default.
- W2012248317 creator A5091088864 @default.
- W2012248317 creator A5091394213 @default.
- W2012248317 date "2004-06-01" @default.
- W2012248317 modified "2023-10-01" @default.
- W2012248317 title "A Unified Nomenclature for Protein Subunits of Mediator Complexes Linking Transcriptional Regulators to RNA Polymerase II" @default.
- W2012248317 cites W1593089530 @default.
- W2012248317 cites W1655574943 @default.
- W2012248317 cites W1658957308 @default.
- W2012248317 cites W1764462027 @default.
- W2012248317 cites W1805450297 @default.
- W2012248317 cites W1911810168 @default.
- W2012248317 cites W1977825894 @default.
- W2012248317 cites W1982026438 @default.
- W2012248317 cites W1998063596 @default.
- W2012248317 cites W1998363999 @default.
- W2012248317 cites W2008698762 @default.
- W2012248317 cites W2012131171 @default.
- W2012248317 cites W2014228869 @default.
- W2012248317 cites W2021893003 @default.
- W2012248317 cites W2023009353 @default.
- W2012248317 cites W2023555599 @default.
- W2012248317 cites W2026408445 @default.
- W2012248317 cites W2033042898 @default.
- W2012248317 cites W2039099407 @default.
- W2012248317 cites W2040249554 @default.
- W2012248317 cites W2042157210 @default.
- W2012248317 cites W2044756723 @default.
- W2012248317 cites W2048156032 @default.
- W2012248317 cites W2048921906 @default.
- W2012248317 cites W2054396191 @default.
- W2012248317 cites W2056635197 @default.
- W2012248317 cites W2060484288 @default.
- W2012248317 cites W2062439115 @default.
- W2012248317 cites W2078578982 @default.
- W2012248317 cites W2080910217 @default.
- W2012248317 cites W2083854144 @default.
- W2012248317 cites W2094184203 @default.
- W2012248317 cites W2100697656 @default.
- W2012248317 cites W2104097288 @default.
- W2012248317 cites W2110752603 @default.
- W2012248317 cites W2123037110 @default.
- W2012248317 cites W2128213342 @default.
- W2012248317 cites W2128537226 @default.
- W2012248317 cites W2133178320 @default.
- W2012248317 cites W2135992596 @default.
- W2012248317 cites W2149920358 @default.
- W2012248317 cites W2151849975 @default.
- W2012248317 cites W2153110406 @default.
- W2012248317 cites W2159894317 @default.
- W2012248317 cites W2160018509 @default.
- W2012248317 cites W2162042193 @default.