Matches in SemOpenAlex for { <https://semopenalex.org/work/W2012259152> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W2012259152 endingPage "553" @default.
- W2012259152 startingPage "541" @default.
- W2012259152 abstract "Cette étude porte sur la caractérisation de la matière organique dissoute de différentes eaux de retenue et de rivière. Outre les outils analytiques généralement utilisés dans ce type d'approche, carbone organique dissous, carbone organique dissous biodégradable, absorbance dans l'ultraviolet, ultrafiltration et potentiels de réactivité avec le chlore et l'ozone, ce travail de recherche s'appuie sur la mise en œuvre d'une méthode de fractionnement du COD sur résines XAD-8 et XAD-4 utilisées en série permettant de distinguer trois fractions, les substances hydrophobes (substances humiques), les acides hydrophiles et les substances hydrophiles non adsorbées. Les eaux de retenue collectées affichent des teneurs en COD et des absorbances UV à 254 nm, synonyme de la présence de structures aromatiques, plus importantes que celles des eaux de rivière. Globalement, la matière organique de ces eaux est constituée de deux fractions, une hydrophobe (matière organique adsorbée sur résine XAD-8 à pH acide) et une hydrophile (matière organique non retenue sur résine XAD-8 à pH acide) quantitativement équivalentes. La fraction hydrophobe englobe toutefois l'essentiel des structures aromatiques. Néanmoins, il est intéressant de noter que la matière organique hydrophobe est proportionnellement plus abondante dans les eaux de retenue (51 à 62% du COD) que dans les eaux de rivière (41 à 50% du COD). En contre partie, les composés hydrophiles non adsorbés sur résines XAD représentent une fraction significativement plus importante dans les eaux de rivière que dans les eaux de retenue. Pour l'eau de la Loire, cas particulier pour lequel la distribution hydrophobes/hydrophiles correspond à 41%/59% en COD, l'étude de la distribution des masses moléculaires apparentes déterminée par filtration sur membrane 1000 daltons, a permis de souligner la prédominance des composés de plus faibles masses moléculaires (< 1000 daltons) comparativement aux autres eaux étudiées. Cet ensemble de résultats pourrait être associéà la présence plus importante de sédiments en suspension dans les eaux de rivière, les sédiments favorisant l'adsorption et/ou la complexation, en présence d'espèces métalliques, des matières humiques définies comme hydrophobes. En ce qui concerne la réactivité des eaux naturelles avec les oxydants, les demandes en chlore et en ozone, les PFTHMt et les PFTOX, sont proportionnels à la teneur en COD et à l'absorbance UV à 254 nm des eaux étudiées. Les potentiels de réactivité relatifs (rapportés à l'unité de carbone) sont d'autant plus élevés que l'absorbance relative des eaux (Abs UV/mg COD) est grande. Les eaux de retenue présentent, dans ce sens, des réactivités vis-à-vis des oxydants plus fortes que les eaux de rivière. Enfin, la teneur en CODB des eaux naturelles comprise entre 8 et 22% est difficilement reliable aux autres données obtenues. The aim of this study was to characterize and compare the dissolved natural organic matter (DOM) of various river and reservoir waters. The determination of the “hydrophobic/hydrophilic DOM distribution” was used in parallel with more related drinking water parameters to compare the selected waters (i.e. chlorine and ozone reactivity). The “hydrophobic/hydrophilic DOM distribution” also called “humic/non-humic NOM distribution” of eight natural surface waters, four reservoir waters and four river waters, was determined by fractionating the organic matrix into three fractions onto two superposed XAD-8 and XAD-4 resin columns at acidic pH, the hydrophobic substances (i.e. humic substances) that adsorbed onto the XAD-8 resin, the hydrophilic acids that adsorbed onto the XAD-4 resin, and the non-adsorbed hydrophilic solutes that are contained into the XAD-4 effluent. The “hydrophobic/hydrophilic DOM distribution” was determined based on DOC or UV-254 nm measurements. The structural characterization of the NOM was completed by the determination of its biodegradable dissolved organic carbon (BDOC) content and its apparent molecular weight distribution using a 1000 dalton cutoff ultrafiltration membrane. Batch ozonation and chlorination were conducted on the various surface waters to compare their ozone demand and chlorine reactivity (chlorine demand, TTHM and TOX formation potentials). The waters collected from the reservoirs were found to be richer in DOC (6.8–7.8 mg l−1) and showed higher UV-254 nm absorbance values (0.22–0.29 cm−1) than the waters sampled from the rivers (2.8–5.3 mg l−1 of DOC, UV-254 nm absorbance ranged from 0.057 to 0.15 cm−1). Whatever the origin of the water, the higher the DOC, the higher the UV absorbance. However, a better correlation was obtained between these two parameters when considering the two groups of waters separately. The “hydrophobic/hydrophilic DOM distribution” showed that the DOC of both reservoir and river waters was evenly split between the hydrophobic and the hydrophilic fractions. Nevertheless, the hydrophobic fraction (i.e. humic substances) was found to be proportionally more abundant in reservoir waters (51–62% of the DOC) than in river waters (41–50% of DOC). This observation correlates well with the fact that the relative UV absorbance (also called specific UV absorbance: UV Abs.l/mg C) of the studied reservoir waters was generally higher than the relative UV absorbance of the studied river waters, since humic substances are known to be the most aromatic NOM fraction. On the contrary, data have also shown that the non-adsorbed hydrophilic fraction was significantly more abundant in rivers (23–26% of the DOC) than in reservoirs (14–21% of the DOC). One can note that the hydrophilic acids represent a pseudo constant fraction whatever the origin of the water (24–28% for seven of the eight surface waters). The presence of suspended sediments in rivers may explain the predominance of hydrophilic substances for this group of surface waters because of possible interactions (adsorption properties) between suspended materials and humic substances (hydrophobic organic fraction). The Loire river which corresponds to the largest river we have studied (rich in suspended sediments) was characterized by the lowest hydrophobic organic content, 40% of the DOC, a proportion that is similar to the ones previously observed by Semmens and Staples (1986) and Collins et al. (1986) for the Mississippi river and the Colorado river, respectively. Using a 1000 dalton ultrafiltration membrane no significant difference was observed between the apparent molecular weight distribution of the DOC of both river and reservoir waters. Organics above 1000 daltons generally accounted for up to 70–80% of the DOC. Results obtained with the Loire river were significantly different showing 50% of the DOC below 1000 daltons as compared to 20–30% for the other waters. These data are of particular interest because, according to the XAD-8/XAD-4 isolation procedure, the more hydrophilic the NOM, the lower its apparent molecular weight. One could note that the biodegradable dissolved organic carbon (BDOC) accounted for approximately 15% of the DOC of the studied waters. If one could expect that higher the hydrophilic organic content, the higher the BDOC content, no significant correlation was established between these two parameters. Reservoir waters were found to be more reactive with chlorine and ozone than river waters. The higher the UV-Abs or DOC of the water, the higher the ozone demand, chlorine demand, TOXFP, and THMFP. A reasonably good correlation was obtained between the ozone demand and chlorine demand. Regarding the DPB formation potentials, TTHMFP accounted for approximately 25% of TOXFP. Taking into account the DOC content of the different waters, the relative TTHMFP and TOXFP (μg Cl mg−1 C) were determined to be generally (with few exceptions) higher for the reservoir waters than for the river waters. However, no direct correlation between the hydrophobic organic content (i.e. humic substances content) and the DPB formation potentials could be established. Indeed, results of our previous works (Croue et al., 1993b) have shown that THMFP and TOXFP of hydrophilic acids and fulvic acids (90% of the humic substances) were similar." @default.
- W2012259152 created "2016-06-24" @default.
- W2012259152 creator A5003539353 @default.
- W2012259152 creator A5032856478 @default.
- W2012259152 creator A5061331023 @default.
- W2012259152 creator A5063553539 @default.
- W2012259152 date "1997-03-01" @default.
- W2012259152 modified "2023-10-17" @default.
- W2012259152 title "Distribution et caractérisation de la matière organique dissoute d'eaux naturelles de surface" @default.
- W2012259152 cites W1499266263 @default.
- W2012259152 cites W1560741501 @default.
- W2012259152 cites W1970037992 @default.
- W2012259152 cites W1974325404 @default.
- W2012259152 cites W1985991558 @default.
- W2012259152 cites W1987331269 @default.
- W2012259152 cites W1989598523 @default.
- W2012259152 cites W1996388937 @default.
- W2012259152 cites W2003453885 @default.
- W2012259152 cites W2007663401 @default.
- W2012259152 cites W2024776824 @default.
- W2012259152 cites W2032617760 @default.
- W2012259152 cites W2037340869 @default.
- W2012259152 cites W2045299935 @default.
- W2012259152 cites W2048188849 @default.
- W2012259152 cites W2077135548 @default.
- W2012259152 cites W2803640628 @default.
- W2012259152 doi "https://doi.org/10.1016/s0043-1354(96)00259-x" @default.
- W2012259152 hasPublicationYear "1997" @default.
- W2012259152 type Work @default.
- W2012259152 sameAs 2012259152 @default.
- W2012259152 citedByCount "98" @default.
- W2012259152 countsByYear W20122591522012 @default.
- W2012259152 countsByYear W20122591522013 @default.
- W2012259152 countsByYear W20122591522014 @default.
- W2012259152 countsByYear W20122591522015 @default.
- W2012259152 countsByYear W20122591522016 @default.
- W2012259152 countsByYear W20122591522017 @default.
- W2012259152 countsByYear W20122591522018 @default.
- W2012259152 countsByYear W20122591522019 @default.
- W2012259152 countsByYear W20122591522020 @default.
- W2012259152 countsByYear W20122591522021 @default.
- W2012259152 countsByYear W20122591522022 @default.
- W2012259152 countsByYear W20122591522023 @default.
- W2012259152 crossrefType "journal-article" @default.
- W2012259152 hasAuthorship W2012259152A5003539353 @default.
- W2012259152 hasAuthorship W2012259152A5032856478 @default.
- W2012259152 hasAuthorship W2012259152A5061331023 @default.
- W2012259152 hasAuthorship W2012259152A5063553539 @default.
- W2012259152 hasConcept C185592680 @default.
- W2012259152 hasConceptScore W2012259152C185592680 @default.
- W2012259152 hasIssue "3" @default.
- W2012259152 hasLocation W20122591521 @default.
- W2012259152 hasOpenAccess W2012259152 @default.
- W2012259152 hasPrimaryLocation W20122591521 @default.
- W2012259152 hasRelatedWork W1531601525 @default.
- W2012259152 hasRelatedWork W2319480705 @default.
- W2012259152 hasRelatedWork W2384464875 @default.
- W2012259152 hasRelatedWork W2606230654 @default.
- W2012259152 hasRelatedWork W2607424097 @default.
- W2012259152 hasRelatedWork W2748952813 @default.
- W2012259152 hasRelatedWork W2899084033 @default.
- W2012259152 hasRelatedWork W2948807893 @default.
- W2012259152 hasRelatedWork W4387497383 @default.
- W2012259152 hasRelatedWork W2778153218 @default.
- W2012259152 hasVolume "31" @default.
- W2012259152 isParatext "false" @default.
- W2012259152 isRetracted "false" @default.
- W2012259152 magId "2012259152" @default.
- W2012259152 workType "article" @default.