Matches in SemOpenAlex for { <https://semopenalex.org/work/W2012291214> ?p ?o ?g. }
- W2012291214 endingPage "95" @default.
- W2012291214 startingPage "83" @default.
- W2012291214 abstract "Esterified hyaluronan scaffolds offer significant advantages for tissue engineering. They are recognized by cellular receptors, interact with many other extracellular matrix proteins and their metabolism is mediated by intrinsic cellular pathways. In this study differences in the viability and structural integrity of vascular tissue models cultured on hyaluronan scaffolds under laminar flow conditions highlighted potential differences in the biodegradation kinetics, processes and end-products, depending on the culture environment. Critical factors are likely to include seeding densities and the duration and magnitude of applied biomechanical stress. Proteomic evaluation of the timing and amount of remodelling protein expression, the resulting biomechanical changes arising from this response and metabolic cell viability assay, together with examination of tissue morphology, were conducted in vascular tissue models cultured on esterified hyaluronan felt and PTFE mesh scaffolds. The vascular tissue models were derived using complete cell sheets derived from harvested and expanded umbilical cord vein cells. This seeding method utilizes high-density cell populations from the outset, while the cells are already supported by their own abundant extracellular matrix. Type I and type IV collagen expression in parallel with MMP-1 and MMP-2 expression were monitored in the tissue models over a 10 day culture period under laminar flow regimes using protein immobilization technologies. Uniaxial tensile testing and scanning electron microscopy were used to compare the resulting effects of hydrodynamic stimulation upon structural integrity, while viability assays were conducted to evaluate the effects of shear on metabolic function. The proteomic results showed that the hyaluronan felt-supported tissues expressed higher levels of all remodelling proteins than those cultured on PTFE mesh. Overall, a 21% greater expression of type I collagen, 24% higher levels of type IV collagen, 24% higher levels of MMP-1 and 34% more MMP-2 were observed during hydrodynamic stress. This was coupled with a loss of structural integrity in these models after the introduction of laminar flow, as compared to the increases in all mechanical properties observed in the PTFE mesh-supported tissues. However, under flow conditions, the hyaluronan-supported tissues showed some recovery of the viability originally lost during static culture conditions, in contrast to PTFE mesh-based models, where initial gains were followed by a decline in metabolic viability after applied shear stress. Proteomic, cell viability and mechanical testing data emphasized the need for extended in vitro evaluations to enable better understanding of multi-stage remodelling and reparative processes in tissues cultured on biodegradable scaffolds. This study also highlighted the possibility that in high-density tissue culture with a biodegradable component, dynamic conditions may be more conducive to optimal tissue development than the static environment because they facilitate the efficient removal of high concentrations of degradation end-products accumulating in the pericellular space. Copyright © 2009 John Wiley & Sons, Ltd." @default.
- W2012291214 created "2016-06-24" @default.
- W2012291214 creator A5070996258 @default.
- W2012291214 creator A5073910204 @default.
- W2012291214 creator A5076755921 @default.
- W2012291214 date "2010-02-01" @default.
- W2012291214 modified "2023-09-23" @default.
- W2012291214 title "Investigating the importance of flow when utilizing hyaluronan scaffolds for tissue engineering" @default.
- W2012291214 cites W1601573140 @default.
- W2012291214 cites W1869810523 @default.
- W2012291214 cites W1963699147 @default.
- W2012291214 cites W1965172266 @default.
- W2012291214 cites W1968444628 @default.
- W2012291214 cites W1968776283 @default.
- W2012291214 cites W1969375564 @default.
- W2012291214 cites W1973776578 @default.
- W2012291214 cites W1974367286 @default.
- W2012291214 cites W1978188277 @default.
- W2012291214 cites W1981731794 @default.
- W2012291214 cites W1996613468 @default.
- W2012291214 cites W2006208339 @default.
- W2012291214 cites W2018448036 @default.
- W2012291214 cites W2020209321 @default.
- W2012291214 cites W2022128111 @default.
- W2012291214 cites W2029249997 @default.
- W2012291214 cites W2031203524 @default.
- W2012291214 cites W2031844423 @default.
- W2012291214 cites W2032706337 @default.
- W2012291214 cites W2038541420 @default.
- W2012291214 cites W2038863331 @default.
- W2012291214 cites W2041564317 @default.
- W2012291214 cites W2043143369 @default.
- W2012291214 cites W2051739357 @default.
- W2012291214 cites W2053802748 @default.
- W2012291214 cites W2067045483 @default.
- W2012291214 cites W2076486888 @default.
- W2012291214 cites W2085077495 @default.
- W2012291214 cites W2089444942 @default.
- W2012291214 cites W2100491597 @default.
- W2012291214 cites W2105695271 @default.
- W2012291214 cites W2111419024 @default.
- W2012291214 cites W2122180971 @default.
- W2012291214 cites W2123498957 @default.
- W2012291214 cites W2129949525 @default.
- W2012291214 cites W2135760506 @default.
- W2012291214 cites W2136899344 @default.
- W2012291214 cites W2150304491 @default.
- W2012291214 cites W2157603347 @default.
- W2012291214 cites W4242063371 @default.
- W2012291214 cites W4243231451 @default.
- W2012291214 cites W8794497 @default.
- W2012291214 doi "https://doi.org/10.1002/term.208" @default.
- W2012291214 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/19937643" @default.
- W2012291214 hasPublicationYear "2010" @default.
- W2012291214 type Work @default.
- W2012291214 sameAs 2012291214 @default.
- W2012291214 citedByCount "12" @default.
- W2012291214 countsByYear W20122912142012 @default.
- W2012291214 countsByYear W20122912142014 @default.
- W2012291214 countsByYear W20122912142015 @default.
- W2012291214 countsByYear W20122912142016 @default.
- W2012291214 countsByYear W20122912142017 @default.
- W2012291214 countsByYear W20122912142018 @default.
- W2012291214 countsByYear W20122912142019 @default.
- W2012291214 countsByYear W20122912142021 @default.
- W2012291214 crossrefType "journal-article" @default.
- W2012291214 hasAuthorship W2012291214A5070996258 @default.
- W2012291214 hasAuthorship W2012291214A5073910204 @default.
- W2012291214 hasAuthorship W2012291214A5076755921 @default.
- W2012291214 hasBestOaLocation W20122912141 @default.
- W2012291214 hasConcept C106487976 @default.
- W2012291214 hasConcept C12554922 @default.
- W2012291214 hasConcept C136229726 @default.
- W2012291214 hasConcept C1491633281 @default.
- W2012291214 hasConcept C166397571 @default.
- W2012291214 hasConcept C185592680 @default.
- W2012291214 hasConcept C189165786 @default.
- W2012291214 hasConcept C190672674 @default.
- W2012291214 hasConcept C43617362 @default.
- W2012291214 hasConcept C49892992 @default.
- W2012291214 hasConcept C53227056 @default.
- W2012291214 hasConcept C55493867 @default.
- W2012291214 hasConcept C59822182 @default.
- W2012291214 hasConcept C71924100 @default.
- W2012291214 hasConcept C86803240 @default.
- W2012291214 hasConcept C95444343 @default.
- W2012291214 hasConceptScore W2012291214C106487976 @default.
- W2012291214 hasConceptScore W2012291214C12554922 @default.
- W2012291214 hasConceptScore W2012291214C136229726 @default.
- W2012291214 hasConceptScore W2012291214C1491633281 @default.
- W2012291214 hasConceptScore W2012291214C166397571 @default.
- W2012291214 hasConceptScore W2012291214C185592680 @default.
- W2012291214 hasConceptScore W2012291214C189165786 @default.
- W2012291214 hasConceptScore W2012291214C190672674 @default.
- W2012291214 hasConceptScore W2012291214C43617362 @default.
- W2012291214 hasConceptScore W2012291214C49892992 @default.
- W2012291214 hasConceptScore W2012291214C53227056 @default.
- W2012291214 hasConceptScore W2012291214C55493867 @default.