Matches in SemOpenAlex for { <https://semopenalex.org/work/W2012303062> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W2012303062 endingPage "339" @default.
- W2012303062 startingPage "339" @default.
- W2012303062 abstract "It is proved that the multiplicative semigroup of the ring of polynomials in two commuting indeterminates over a noncommutative domain contains a noncommutative free subsemigroup. The question whether the multiplicative group of a division ring D contains a free noncommutative subgroup has been raised by Lichtman [4]. The answer is positive when D is finite-dimensional over its center Z. A more general result is given in [2]. The question is studied further in [3], but the general case is still open. Makar-Limanov raised a seemingly simpler question: Does D* = D {O} contain a free noncommutative subsemigroup? In [5] he proved that the answer is positive when Z is uncountable. In the present note we propose a more general question: Given a noncommutative domain D (with 1) does D* contain a free noncommutative subsemigroup? Using a recent result [1, Theorem 3] it is possible to extend MakarLimanov's result to noncommutative domains. We prove a stronger result that has the advantage that it does not make any assumptions on the center. It says that if R is a noncommutative domain and u, v are commuting indeterminates over R, then the multiplicative semigroup of the ring of polynomials R[u, v] contains a free noncommutative subsemigroup. The case of a domain with uncountable center then becomes an easy corollary. Let W be the free semigroup of words in two letters x, y. A nonempty word can be written in the form xilyjl ... xiryIr with r, ji, ... , ir > 1 and ii, jr > 0. A relation between two elements a, b of a semigroup is a pair (wI, w2) of two distinct words wI, w2 E W. Since we are interested in the semigroup S* where S is a domain, we may consider only relations (wI, w2) such that w1, w2 do not end (and do not start) with the same letter. A relation is said to be homogeneous if w1 and w2 have the same degree in x and the same degree in y. In what follows, R will be a domain and R[u, v] the polynomial ring in two commuting indeterminates u, v over R. The subring of R generated by 1 is denoted by P, and P(x, y) is the free algebra in x, y over P. Received by the editors October 12, 1990 and, in revised form, March 25, 1991. 1991 Mathematics Subject Classification. Primary 16U10; Secondary 20M05." @default.
- W2012303062 created "2016-06-24" @default.
- W2012303062 creator A5056931409 @default.
- W2012303062 date "1992-02-01" @default.
- W2012303062 modified "2023-10-17" @default.
- W2012303062 title "Free subsemigroups of domains" @default.
- W2012303062 cites W1992114410 @default.
- W2012303062 cites W2030987181 @default.
- W2012303062 cites W2049086652 @default.
- W2012303062 cites W2316264530 @default.
- W2012303062 cites W2334737286 @default.
- W2012303062 doi "https://doi.org/10.1090/s0002-9939-1992-1096212-2" @default.
- W2012303062 hasPublicationYear "1992" @default.
- W2012303062 type Work @default.
- W2012303062 sameAs 2012303062 @default.
- W2012303062 citedByCount "3" @default.
- W2012303062 countsByYear W20123030622019 @default.
- W2012303062 crossrefType "journal-article" @default.
- W2012303062 hasAuthorship W2012303062A5056931409 @default.
- W2012303062 hasBestOaLocation W20123030621 @default.
- W2012303062 hasConcept C110729354 @default.
- W2012303062 hasConcept C114614502 @default.
- W2012303062 hasConcept C118615104 @default.
- W2012303062 hasConcept C134306372 @default.
- W2012303062 hasConcept C142399903 @default.
- W2012303062 hasConcept C178790620 @default.
- W2012303062 hasConcept C185592680 @default.
- W2012303062 hasConcept C193645952 @default.
- W2012303062 hasConcept C202444582 @default.
- W2012303062 hasConcept C207405024 @default.
- W2012303062 hasConcept C2779463800 @default.
- W2012303062 hasConcept C2780378348 @default.
- W2012303062 hasConcept C29384965 @default.
- W2012303062 hasConcept C31671303 @default.
- W2012303062 hasConcept C33923547 @default.
- W2012303062 hasConcept C36503486 @default.
- W2012303062 hasConcept C42747912 @default.
- W2012303062 hasConcept C60798267 @default.
- W2012303062 hasConcept C68797384 @default.
- W2012303062 hasConcept C8010536 @default.
- W2012303062 hasConcept C94375191 @default.
- W2012303062 hasConceptScore W2012303062C110729354 @default.
- W2012303062 hasConceptScore W2012303062C114614502 @default.
- W2012303062 hasConceptScore W2012303062C118615104 @default.
- W2012303062 hasConceptScore W2012303062C134306372 @default.
- W2012303062 hasConceptScore W2012303062C142399903 @default.
- W2012303062 hasConceptScore W2012303062C178790620 @default.
- W2012303062 hasConceptScore W2012303062C185592680 @default.
- W2012303062 hasConceptScore W2012303062C193645952 @default.
- W2012303062 hasConceptScore W2012303062C202444582 @default.
- W2012303062 hasConceptScore W2012303062C207405024 @default.
- W2012303062 hasConceptScore W2012303062C2779463800 @default.
- W2012303062 hasConceptScore W2012303062C2780378348 @default.
- W2012303062 hasConceptScore W2012303062C29384965 @default.
- W2012303062 hasConceptScore W2012303062C31671303 @default.
- W2012303062 hasConceptScore W2012303062C33923547 @default.
- W2012303062 hasConceptScore W2012303062C36503486 @default.
- W2012303062 hasConceptScore W2012303062C42747912 @default.
- W2012303062 hasConceptScore W2012303062C60798267 @default.
- W2012303062 hasConceptScore W2012303062C68797384 @default.
- W2012303062 hasConceptScore W2012303062C8010536 @default.
- W2012303062 hasConceptScore W2012303062C94375191 @default.
- W2012303062 hasIssue "2" @default.
- W2012303062 hasLocation W20123030621 @default.
- W2012303062 hasOpenAccess W2012303062 @default.
- W2012303062 hasPrimaryLocation W20123030621 @default.
- W2012303062 hasRelatedWork W1709730277 @default.
- W2012303062 hasRelatedWork W1901126459 @default.
- W2012303062 hasRelatedWork W1969164349 @default.
- W2012303062 hasRelatedWork W1975091179 @default.
- W2012303062 hasRelatedWork W1981182795 @default.
- W2012303062 hasRelatedWork W1984999176 @default.
- W2012303062 hasRelatedWork W1987296266 @default.
- W2012303062 hasRelatedWork W1992114410 @default.
- W2012303062 hasRelatedWork W1992429350 @default.
- W2012303062 hasRelatedWork W1995035603 @default.
- W2012303062 hasRelatedWork W2013977043 @default.
- W2012303062 hasRelatedWork W2044668209 @default.
- W2012303062 hasRelatedWork W2057037337 @default.
- W2012303062 hasRelatedWork W2058846385 @default.
- W2012303062 hasRelatedWork W2076149810 @default.
- W2012303062 hasRelatedWork W2137254915 @default.
- W2012303062 hasRelatedWork W274625226 @default.
- W2012303062 hasRelatedWork W2963121104 @default.
- W2012303062 hasRelatedWork W3118645962 @default.
- W2012303062 hasRelatedWork W39691314 @default.
- W2012303062 hasVolume "116" @default.
- W2012303062 isParatext "false" @default.
- W2012303062 isRetracted "false" @default.
- W2012303062 magId "2012303062" @default.
- W2012303062 workType "article" @default.