Matches in SemOpenAlex for { <https://semopenalex.org/work/W2012313887> ?p ?o ?g. }
- W2012313887 endingPage "1261" @default.
- W2012313887 startingPage "1250" @default.
- W2012313887 abstract "In this paper, we propose a new weighted fuzzy interpolative reasoning method for sparse fuzzy rule-based systems based on the slopes of fuzzy sets. We also propose a particle swarm optimization (PSO)-based weights-learning algorithm to automatically learn the optimal weights of the antecedent variables of fuzzy rules for weighted fuzzy interpolative reasoning. We apply the proposed weighted fuzzy interpolative reasoning method using the proposed PSO-based weights-learning algorithm to deal with the computer activity prediction problem, the multivariate regression problems, and the time series prediction problems. The experimental results show that the proposed weighted fuzzy interpolative reasoning method using the proposed PSO-based weights-learning algorithm outperforms the existing methods for dealing with the computer activity prediction problem, the multivariate regression problems, and the time series prediction problems." @default.
- W2012313887 created "2016-06-24" @default.
- W2012313887 creator A5052341134 @default.
- W2012313887 creator A5061831201 @default.
- W2012313887 date "2015-07-01" @default.
- W2012313887 modified "2023-10-18" @default.
- W2012313887 title "Weighted Fuzzy Interpolative Reasoning Based on the Slopes of Fuzzy Sets and Particle Swarm Optimization Techniques" @default.
- W2012313887 cites W1578249005 @default.
- W2012313887 cites W1875348914 @default.
- W2012313887 cites W1963692016 @default.
- W2012313887 cites W1986230769 @default.
- W2012313887 cites W1992822698 @default.
- W2012313887 cites W2000859003 @default.
- W2012313887 cites W2000950277 @default.
- W2012313887 cites W2007850669 @default.
- W2012313887 cites W2009443815 @default.
- W2012313887 cites W2009566536 @default.
- W2012313887 cites W2010301304 @default.
- W2012313887 cites W2013198395 @default.
- W2012313887 cites W2022710062 @default.
- W2012313887 cites W2027173927 @default.
- W2012313887 cites W2038683228 @default.
- W2012313887 cites W2050288270 @default.
- W2012313887 cites W2055853541 @default.
- W2012313887 cites W2068954680 @default.
- W2012313887 cites W2086486199 @default.
- W2012313887 cites W2087852629 @default.
- W2012313887 cites W2089491238 @default.
- W2012313887 cites W2103127765 @default.
- W2012313887 cites W2107287663 @default.
- W2012313887 cites W2110506971 @default.
- W2012313887 cites W2112486431 @default.
- W2012313887 cites W2116019283 @default.
- W2012313887 cites W2117496317 @default.
- W2012313887 cites W2122158843 @default.
- W2012313887 cites W2122475393 @default.
- W2012313887 cites W2122659777 @default.
- W2012313887 cites W2126120381 @default.
- W2012313887 cites W2127874772 @default.
- W2012313887 cites W2133305891 @default.
- W2012313887 cites W2134138371 @default.
- W2012313887 cites W2136760654 @default.
- W2012313887 cites W2149002934 @default.
- W2012313887 cites W2150654499 @default.
- W2012313887 cites W2152195021 @default.
- W2012313887 cites W2152695669 @default.
- W2012313887 cites W2156715830 @default.
- W2012313887 cites W2159757382 @default.
- W2012313887 cites W2160637888 @default.
- W2012313887 cites W2166593799 @default.
- W2012313887 cites W2171718769 @default.
- W2012313887 cites W2320438893 @default.
- W2012313887 cites W4211007335 @default.
- W2012313887 doi "https://doi.org/10.1109/tcyb.2014.2347956" @default.
- W2012313887 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25204003" @default.
- W2012313887 hasPublicationYear "2015" @default.
- W2012313887 type Work @default.
- W2012313887 sameAs 2012313887 @default.
- W2012313887 citedByCount "28" @default.
- W2012313887 countsByYear W20123138872016 @default.
- W2012313887 countsByYear W20123138872017 @default.
- W2012313887 countsByYear W20123138872018 @default.
- W2012313887 countsByYear W20123138872019 @default.
- W2012313887 countsByYear W20123138872020 @default.
- W2012313887 countsByYear W20123138872021 @default.
- W2012313887 countsByYear W20123138872022 @default.
- W2012313887 countsByYear W20123138872023 @default.
- W2012313887 crossrefType "journal-article" @default.
- W2012313887 hasAuthorship W2012313887A5052341134 @default.
- W2012313887 hasAuthorship W2012313887A5061831201 @default.
- W2012313887 hasConcept C119857082 @default.
- W2012313887 hasConcept C124101348 @default.
- W2012313887 hasConcept C126255220 @default.
- W2012313887 hasConcept C127385683 @default.
- W2012313887 hasConcept C148671577 @default.
- W2012313887 hasConcept C154945302 @default.
- W2012313887 hasConcept C195975749 @default.
- W2012313887 hasConcept C2780049643 @default.
- W2012313887 hasConcept C29470771 @default.
- W2012313887 hasConcept C33923547 @default.
- W2012313887 hasConcept C41008148 @default.
- W2012313887 hasConcept C42011625 @default.
- W2012313887 hasConcept C58166 @default.
- W2012313887 hasConcept C85617194 @default.
- W2012313887 hasConceptScore W2012313887C119857082 @default.
- W2012313887 hasConceptScore W2012313887C124101348 @default.
- W2012313887 hasConceptScore W2012313887C126255220 @default.
- W2012313887 hasConceptScore W2012313887C127385683 @default.
- W2012313887 hasConceptScore W2012313887C148671577 @default.
- W2012313887 hasConceptScore W2012313887C154945302 @default.
- W2012313887 hasConceptScore W2012313887C195975749 @default.
- W2012313887 hasConceptScore W2012313887C2780049643 @default.
- W2012313887 hasConceptScore W2012313887C29470771 @default.
- W2012313887 hasConceptScore W2012313887C33923547 @default.
- W2012313887 hasConceptScore W2012313887C41008148 @default.
- W2012313887 hasConceptScore W2012313887C42011625 @default.
- W2012313887 hasConceptScore W2012313887C58166 @default.
- W2012313887 hasConceptScore W2012313887C85617194 @default.