Matches in SemOpenAlex for { <https://semopenalex.org/work/W2012320428> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W2012320428 endingPage "46242" @default.
- W2012320428 startingPage "46233" @default.
- W2012320428 abstract "Hyperpolarization-activated,cyclic nucleotide-gated (HCN) channels underlie spontaneous rhythmic activities in the heart and brain. Sulfhydryl modification of ion channels is a proven approach for studying their structure-function relationships; here we examined the effects of the hydrophilic sulfhydryl-modifying agents methanethiosulfonate ethylammonium (MTSEA+) and methanethiosulfonate ethylsulfonate (MTSES−) on wild-type (WT) and engineered HCN1 channels. External application of MTSEA+ to WT channels irreversibly reduced whole-cell currents (I MTSEA/I Control = 42 ± 2%), slowed activation and deactivation kinetics (∼7- and ∼3-fold at −140 and −20 mV, respectively), and produced hyperpolarizing shifts of steady-state activation (V12[MTSEA]=−125.8±9.0mVversusV12[control]=−76.4±1.6mV). Sequence inspection revealed the presence of five endogenous cysteines in the transmembrane domains of HCN1: three are putatively close to the extracellular milieu (Cys303, Cys318, and Cys347 in the S5, S5-P, and P segments, respectively), whereas the remaining two are likely to be cytoplasmic or buried. To identify the molecular constituent(s) responsible for the effects of MTSEA+, we mutated the three “external” cysteines individually to serine. C303S did not yield measurable currents. Whereas C347S channels remained sensitive to MTSEA+, C318S was not modified (I MTSEA/I Control = 101 ± 2%, V12(MTSEA)=−78.4±1.1 mV, and V12(Control)=−79.8±2.3 mV. Likewise, WT (but not C318S) channels were sensitive to MTSES−. Despite their opposite charges, MTSES− produced changes directionally similar to those effected by MTSEA+(I MTSES/I Control = 22 ± 1.6% and V12(MTSES)=−145.8±4.9 mV). We conclude that S5-P Cys318 of HCN1 is externally accessible and that the external pore vestibule and activation gating of HCN channels are allosterically coupled. Hyperpolarization-activated,cyclic nucleotide-gated (HCN) channels underlie spontaneous rhythmic activities in the heart and brain. Sulfhydryl modification of ion channels is a proven approach for studying their structure-function relationships; here we examined the effects of the hydrophilic sulfhydryl-modifying agents methanethiosulfonate ethylammonium (MTSEA+) and methanethiosulfonate ethylsulfonate (MTSES−) on wild-type (WT) and engineered HCN1 channels. External application of MTSEA+ to WT channels irreversibly reduced whole-cell currents (I MTSEA/I Control = 42 ± 2%), slowed activation and deactivation kinetics (∼7- and ∼3-fold at −140 and −20 mV, respectively), and produced hyperpolarizing shifts of steady-state activation (V12[MTSEA]=−125.8±9.0mVversusV12[control]=−76.4±1.6mV). Sequence inspection revealed the presence of five endogenous cysteines in the transmembrane domains of HCN1: three are putatively close to the extracellular milieu (Cys303, Cys318, and Cys347 in the S5, S5-P, and P segments, respectively), whereas the remaining two are likely to be cytoplasmic or buried. To identify the molecular constituent(s) responsible for the effects of MTSEA+, we mutated the three “external” cysteines individually to serine. C303S did not yield measurable currents. Whereas C347S channels remained sensitive to MTSEA+, C318S was not modified (I MTSEA/I Control = 101 ± 2%, V12(MTSEA)=−78.4±1.1 mV, and V12(Control)=−79.8±2.3 mV. Likewise, WT (but not C318S) channels were sensitive to MTSES−. Despite their opposite charges, MTSES− produced changes directionally similar to those effected by MTSEA+(I MTSES/I Control = 22 ± 1.6% and V12(MTSES)=−145.8±4.9 mV). We conclude that S5-P Cys318 of HCN1 is externally accessible and that the external pore vestibule and activation gating of HCN channels are allosterically coupled. The hyperpolarization-activated, cyclicnucleotide-gated (HCN1–4) or the so-called pacemaker channel gene family encode the pacemaking current I for I h that underlies the spontaneous periodic activities found in parts of the heart and brain (1Gauss R. Seifert R. Kaupp U.B. Nature. 1998; 393: 583-587Crossref PubMed Scopus (374) Google Scholar, 2Ludwig A. Zong X. Jeglitsch M. Hofmann F. Biel M. Nature. 1998; 393: 587-591Crossref PubMed Scopus (779) Google Scholar, 3Santoro B. Liu D.T. Yao H. Bartsch D. Kandel E.R. Siegelbaum S.A. Tibbs G.R. Cell. 1998; 93: 717-729Abstract Full Text Full Text PDF PubMed Scopus (577) Google Scholar). Like voltage-gated K+ channels, HCN channels are tetramers (4Xue T. Marbán E. Li R.A. Circ. Res. 2002; 90: 1267-1273Crossref PubMed Scopus (65) Google Scholar) made up of monomeric subunits consisting of six transmembrane segments (S1–6) with a pore-forming P-loop between S5 and S6 (1Gauss R. Seifert R. Kaupp U.B. Nature. 1998; 393: 583-587Crossref PubMed Scopus (374) Google Scholar, 2Ludwig A. Zong X. Jeglitsch M. Hofmann F. Biel M. Nature. 1998; 393: 587-591Crossref PubMed Scopus (779) Google Scholar, 3Santoro B. Liu D.T. Yao H. Bartsch D. Kandel E.R. Siegelbaum S.A. Tibbs G.R. Cell. 1998; 93: 717-729Abstract Full Text Full Text PDF PubMed Scopus (577) Google Scholar). Different HCN isoforms can co-assemble with each other to form heteromultimeric complexes, greatly increasing the diversity of the molecular identity of native I f (4Xue T. Marbán E. Li R.A. Circ. Res. 2002; 90: 1267-1273Crossref PubMed Scopus (65) Google Scholar, 5Chen S. Wang J. Siegelbaum S.A. J. Gen. Physiol. 2001; 117: 491-504Crossref PubMed Scopus (324) Google Scholar, 6Ulens C. Tytgat J. J. Biol. Chem. 2001; 276: 6069-6072Abstract Full Text Full Text PDF PubMed Scopus (174) Google Scholar). Despite the presumed structural similarity to K+ channels, direct evidence regarding the topology of HCN channels is relatively sparse.Inspection of the primary sequences of HCN channels (1Gauss R. Seifert R. Kaupp U.B. Nature. 1998; 393: 583-587Crossref PubMed Scopus (374) Google Scholar, 2Ludwig A. Zong X. Jeglitsch M. Hofmann F. Biel M. Nature. 1998; 393: 587-591Crossref PubMed Scopus (779) Google Scholar, 3Santoro B. Liu D.T. Yao H. Bartsch D. Kandel E.R. Siegelbaum S.A. Tibbs G.R. Cell. 1998; 93: 717-729Abstract Full Text Full Text PDF PubMed Scopus (577) Google Scholar) reveals the presence of a total of five endogenous cysteines in the transmembrane domains: three appear to be close to the extracellular side (Cys303, Cys318, and Cys347 in the S5, S5-P, and P segments, respectively; HCN1 numbering), whereas the remaining two are likely to be cytoplasmic or buried (S5 Cys298 and S6 Cys374) (Fig.1). It is known that the cysteine sulfhydryl, in its reduced form, may readily undergo chemical reactions (such as alkylation, acylation, and arylation) or even cross-link with a second nearby cysteine to form a disulfide bridge (7Benitah J.P. Tomaselli G.F. Marbán E. Proc. Natl. Acad. Sci. U. S. A. 1996; 93: 7392-7396Crossref PubMed Scopus (57) Google Scholar, 8Tsushima R.G. Li R.A. Backx P.H. J. Gen. Physiol. 1997; 110: 59-72Crossref PubMed Scopus (57) Google Scholar). These properties render free cysteinyl the most chemically reactive amino acid side chain (9Creighton T. Proteins: Structures and Molecular Properties. 5th Ed. W. H. Freeman & Co., New York1997Google Scholar). When exposed to the aqueous phase, cysteinyls can be selectively and covalently modified by hydrophilic sulfhydryl-reactive agents (10Karlin A. Akabas M.H. Methods Enzymol. 1998; 293: 123-145Crossref PubMed Scopus (541) Google Scholar). Indeed, engineering cysteines into proteins, followed by the assessment of their accessibility pattern using a variety of sulfhydryl-reactive probes with different physical and chemical properties (i.e. cysteine scanning mutagenesis), has been a proven approach to study the structure-function relationships of numerous ion channels, receptors, and proteins (7Benitah J.P. Tomaselli G.F. Marbán E. Proc. Natl. Acad. Sci. U. S. A. 1996; 93: 7392-7396Crossref PubMed Scopus (57) Google Scholar, 8Tsushima R.G. Li R.A. Backx P.H. J. Gen. Physiol. 1997; 110: 59-72Crossref PubMed Scopus (57) Google Scholar, 10Karlin A. Akabas M.H. Methods Enzymol. 1998; 293: 123-145Crossref PubMed Scopus (541) Google Scholar, 11Li R.A. Velez P. Chiamvimonvat N. Tomaselli G.F. Marbán E. J. Gen. Physiol. 2000; 115: 81-92Crossref PubMed Scopus (32) Google Scholar, 12Perez-Garcia M.T. Chiamvimonvat N. Marbán E. Tomaselli G.F. Proc. Natl. Acad. Sci. U. S. A. 1996; 93: 300-304Crossref PubMed Scopus (107) Google Scholar, 13Lu Q. Miller C. Science. 1995; 268: 304-307Crossref PubMed Scopus (172) Google Scholar, 14Akabas M.H. Stauffer D.A. Xu M. Karlin A. Science. 1992; 258: 307-310Crossref PubMed Scopus (595) Google Scholar, 15Akabas M.H. Karlin A. Biochemistry. 1995; 34: 12496-12500Crossref PubMed Scopus (159) Google Scholar, 16Akabas M.H. Kaufmann C. Archdeacon P. Karlin A. Neuron. 1994; 13: 919-927Abstract Full Text PDF PubMed Scopus (356) Google Scholar, 17Sun Z.P. Akabas M.H. Goulding E.H. Karlin A. Siegelbaum S.A. Neuron. 1996; 16: 141-149Abstract Full Text Full Text PDF PubMed Scopus (105) Google Scholar).The presence of endogenous cysteines in HCN channels that are putatively exposed to the extracellular milieu raises the possibility that wild-type (WT) 1The abbreviations used for: WT, wild-type; MTS, methanethiosulfonate; MTSEA, methanethiosulfonate ethylammonium; MTSES, methanethiosulfonate ethylsulfonate; DTT, dithiothreitol. 1The abbreviations used for: WT, wild-type; MTS, methanethiosulfonate; MTSEA, methanethiosulfonate ethylammonium; MTSES, methanethiosulfonate ethylsulfonate; DTT, dithiothreitol. channels are susceptible to modifications by sulfhydryl-reactive compounds, which in turn provide an excellent opportunity for localizing structurally and functionally important channel domains. In this report, we examined the effects of the hydrophilic covalent sulfhydryl modifiers methanethiosulfonate ethylammonium (MTSEA) and methanethiosulfonate ethylsulfonate (MTSES), which are positively and negatively charged, respectively, on the functions of HCN1 channels. We found that WT HCN1 channels were indeed modified by these agents. Using site-directed mutagenesis, we identified the native cysteine in the S5-P linker (i.e. Cys318) as the residue responsible for the post-translational changes caused by these agents. Novel insights into the structure-function relationships of HCN channels from these results are discussed. The hyperpolarization-activated, cyclicnucleotide-gated (HCN1–4) or the so-called pacemaker channel gene family encode the pacemaking current I for I h that underlies the spontaneous periodic activities found in parts of the heart and brain (1Gauss R. Seifert R. Kaupp U.B. Nature. 1998; 393: 583-587Crossref PubMed Scopus (374) Google Scholar, 2Ludwig A. Zong X. Jeglitsch M. Hofmann F. Biel M. Nature. 1998; 393: 587-591Crossref PubMed Scopus (779) Google Scholar, 3Santoro B. Liu D.T. Yao H. Bartsch D. Kandel E.R. Siegelbaum S.A. Tibbs G.R. Cell. 1998; 93: 717-729Abstract Full Text Full Text PDF PubMed Scopus (577) Google Scholar). Like voltage-gated K+ channels, HCN channels are tetramers (4Xue T. Marbán E. Li R.A. Circ. Res. 2002; 90: 1267-1273Crossref PubMed Scopus (65) Google Scholar) made up of monomeric subunits consisting of six transmembrane segments (S1–6) with a pore-forming P-loop between S5 and S6 (1Gauss R. Seifert R. Kaupp U.B. Nature. 1998; 393: 583-587Crossref PubMed Scopus (374) Google Scholar, 2Ludwig A. Zong X. Jeglitsch M. Hofmann F. Biel M. Nature. 1998; 393: 587-591Crossref PubMed Scopus (779) Google Scholar, 3Santoro B. Liu D.T. Yao H. Bartsch D. Kandel E.R. Siegelbaum S.A. Tibbs G.R. Cell. 1998; 93: 717-729Abstract Full Text Full Text PDF PubMed Scopus (577) Google Scholar). Different HCN isoforms can co-assemble with each other to form heteromultimeric complexes, greatly increasing the diversity of the molecular identity of native I f (4Xue T. Marbán E. Li R.A. Circ. Res. 2002; 90: 1267-1273Crossref PubMed Scopus (65) Google Scholar, 5Chen S. Wang J. Siegelbaum S.A. J. Gen. Physiol. 2001; 117: 491-504Crossref PubMed Scopus (324) Google Scholar, 6Ulens C. Tytgat J. J. Biol. Chem. 2001; 276: 6069-6072Abstract Full Text Full Text PDF PubMed Scopus (174) Google Scholar). Despite the presumed structural similarity to K+ channels, direct evidence regarding the topology of HCN channels is relatively sparse. Inspection of the primary sequences of HCN channels (1Gauss R. Seifert R. Kaupp U.B. Nature. 1998; 393: 583-587Crossref PubMed Scopus (374) Google Scholar, 2Ludwig A. Zong X. Jeglitsch M. Hofmann F. Biel M. Nature. 1998; 393: 587-591Crossref PubMed Scopus (779) Google Scholar, 3Santoro B. Liu D.T. Yao H. Bartsch D. Kandel E.R. Siegelbaum S.A. Tibbs G.R. Cell. 1998; 93: 717-729Abstract Full Text Full Text PDF PubMed Scopus (577) Google Scholar) reveals the presence of a total of five endogenous cysteines in the transmembrane domains: three appear to be close to the extracellular side (Cys303, Cys318, and Cys347 in the S5, S5-P, and P segments, respectively; HCN1 numbering), whereas the remaining two are likely to be cytoplasmic or buried (S5 Cys298 and S6 Cys374) (Fig.1). It is known that the cysteine sulfhydryl, in its reduced form, may readily undergo chemical reactions (such as alkylation, acylation, and arylation) or even cross-link with a second nearby cysteine to form a disulfide bridge (7Benitah J.P. Tomaselli G.F. Marbán E. Proc. Natl. Acad. Sci. U. S. A. 1996; 93: 7392-7396Crossref PubMed Scopus (57) Google Scholar, 8Tsushima R.G. Li R.A. Backx P.H. J. Gen. Physiol. 1997; 110: 59-72Crossref PubMed Scopus (57) Google Scholar). These properties render free cysteinyl the most chemically reactive amino acid side chain (9Creighton T. Proteins: Structures and Molecular Properties. 5th Ed. W. H. Freeman & Co., New York1997Google Scholar). When exposed to the aqueous phase, cysteinyls can be selectively and covalently modified by hydrophilic sulfhydryl-reactive agents (10Karlin A. Akabas M.H. Methods Enzymol. 1998; 293: 123-145Crossref PubMed Scopus (541) Google Scholar). Indeed, engineering cysteines into proteins, followed by the assessment of their accessibility pattern using a variety of sulfhydryl-reactive probes with different physical and chemical properties (i.e. cysteine scanning mutagenesis), has been a proven approach to study the structure-function relationships of numerous ion channels, receptors, and proteins (7Benitah J.P. Tomaselli G.F. Marbán E. Proc. Natl. Acad. Sci. U. S. A. 1996; 93: 7392-7396Crossref PubMed Scopus (57) Google Scholar, 8Tsushima R.G. Li R.A. Backx P.H. J. Gen. Physiol. 1997; 110: 59-72Crossref PubMed Scopus (57) Google Scholar, 10Karlin A. Akabas M.H. Methods Enzymol. 1998; 293: 123-145Crossref PubMed Scopus (541) Google Scholar, 11Li R.A. Velez P. Chiamvimonvat N. Tomaselli G.F. Marbán E. J. Gen. Physiol. 2000; 115: 81-92Crossref PubMed Scopus (32) Google Scholar, 12Perez-Garcia M.T. Chiamvimonvat N. Marbán E. Tomaselli G.F. Proc. Natl. Acad. Sci. U. S. A. 1996; 93: 300-304Crossref PubMed Scopus (107) Google Scholar, 13Lu Q. Miller C. Science. 1995; 268: 304-307Crossref PubMed Scopus (172) Google Scholar, 14Akabas M.H. Stauffer D.A. Xu M. Karlin A. Science. 1992; 258: 307-310Crossref PubMed Scopus (595) Google Scholar, 15Akabas M.H. Karlin A. Biochemistry. 1995; 34: 12496-12500Crossref PubMed Scopus (159) Google Scholar, 16Akabas M.H. Kaufmann C. Archdeacon P. Karlin A. Neuron. 1994; 13: 919-927Abstract Full Text PDF PubMed Scopus (356) Google Scholar, 17Sun Z.P. Akabas M.H. Goulding E.H. Karlin A. Siegelbaum S.A. Neuron. 1996; 16: 141-149Abstract Full Text Full Text PDF PubMed Scopus (105) Google Scholar). The presence of endogenous cysteines in HCN channels that are putatively exposed to the extracellular milieu raises the possibility that wild-type (WT) 1The abbreviations used for: WT, wild-type; MTS, methanethiosulfonate; MTSEA, methanethiosulfonate ethylammonium; MTSES, methanethiosulfonate ethylsulfonate; DTT, dithiothreitol. 1The abbreviations used for: WT, wild-type; MTS, methanethiosulfonate; MTSEA, methanethiosulfonate ethylammonium; MTSES, methanethiosulfonate ethylsulfonate; DTT, dithiothreitol. channels are susceptible to modifications by sulfhydryl-reactive compounds, which in turn provide an excellent opportunity for localizing structurally and functionally important channel domains. In this report, we examined the effects of the hydrophilic covalent sulfhydryl modifiers methanethiosulfonate ethylammonium (MTSEA) and methanethiosulfonate ethylsulfonate (MTSES), which are positively and negatively charged, respectively, on the functions of HCN1 channels. We found that WT HCN1 channels were indeed modified by these agents. Using site-directed mutagenesis, we identified the native cysteine in the S5-P linker (i.e. Cys318) as the residue responsible for the post-translational changes caused by these agents. Novel insights into the structure-function relationships of HCN channels from these results are discussed. We are indebted to Dr. Eduardo Marbán for guidance, encouragement, and generous support and for critical reading of the manuscript. We also thank Peihong Dong for constructing the channel mutants." @default.
- W2012320428 created "2016-06-24" @default.
- W2012320428 creator A5043075532 @default.
- W2012320428 creator A5089287626 @default.
- W2012320428 date "2002-11-01" @default.
- W2012320428 modified "2023-10-16" @default.
- W2012320428 title "An External Determinant in the S5-P Linker of the Pacemaker (HCN) Channel Identified by Sulfhydryl Modification" @default.
- W2012320428 cites W1592442520 @default.
- W2012320428 cites W1790723840 @default.
- W2012320428 cites W1974273055 @default.
- W2012320428 cites W1977803278 @default.
- W2012320428 cites W1987044668 @default.
- W2012320428 cites W1988174768 @default.
- W2012320428 cites W1990144335 @default.
- W2012320428 cites W1992473638 @default.
- W2012320428 cites W1994522080 @default.
- W2012320428 cites W2004157218 @default.
- W2012320428 cites W2004349398 @default.
- W2012320428 cites W2008142951 @default.
- W2012320428 cites W2010973571 @default.
- W2012320428 cites W2031226921 @default.
- W2012320428 cites W2035624409 @default.
- W2012320428 cites W2045970437 @default.
- W2012320428 cites W2066050747 @default.
- W2012320428 cites W2073286007 @default.
- W2012320428 cites W2089338912 @default.
- W2012320428 cites W2091122073 @default.
- W2012320428 cites W2102160264 @default.
- W2012320428 cites W2106375224 @default.
- W2012320428 cites W2106409486 @default.
- W2012320428 cites W2108402229 @default.
- W2012320428 cites W2110511140 @default.
- W2012320428 cites W2113412887 @default.
- W2012320428 cites W2122167535 @default.
- W2012320428 cites W2128059762 @default.
- W2012320428 cites W2143070723 @default.
- W2012320428 cites W2153500492 @default.
- W2012320428 cites W2167689408 @default.
- W2012320428 cites W4245753859 @default.
- W2012320428 doi "https://doi.org/10.1074/jbc.m204915200" @default.
- W2012320428 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/12351622" @default.
- W2012320428 hasPublicationYear "2002" @default.
- W2012320428 type Work @default.
- W2012320428 sameAs 2012320428 @default.
- W2012320428 citedByCount "29" @default.
- W2012320428 countsByYear W20123204282012 @default.
- W2012320428 countsByYear W20123204282013 @default.
- W2012320428 countsByYear W20123204282014 @default.
- W2012320428 crossrefType "journal-article" @default.
- W2012320428 hasAuthorship W2012320428A5043075532 @default.
- W2012320428 hasAuthorship W2012320428A5089287626 @default.
- W2012320428 hasBestOaLocation W20123204281 @default.
- W2012320428 hasConcept C111919701 @default.
- W2012320428 hasConcept C12554922 @default.
- W2012320428 hasConcept C127162648 @default.
- W2012320428 hasConcept C185592680 @default.
- W2012320428 hasConcept C21951064 @default.
- W2012320428 hasConcept C2780557392 @default.
- W2012320428 hasConcept C31258907 @default.
- W2012320428 hasConcept C41008148 @default.
- W2012320428 hasConcept C71240020 @default.
- W2012320428 hasConcept C86803240 @default.
- W2012320428 hasConceptScore W2012320428C111919701 @default.
- W2012320428 hasConceptScore W2012320428C12554922 @default.
- W2012320428 hasConceptScore W2012320428C127162648 @default.
- W2012320428 hasConceptScore W2012320428C185592680 @default.
- W2012320428 hasConceptScore W2012320428C21951064 @default.
- W2012320428 hasConceptScore W2012320428C2780557392 @default.
- W2012320428 hasConceptScore W2012320428C31258907 @default.
- W2012320428 hasConceptScore W2012320428C41008148 @default.
- W2012320428 hasConceptScore W2012320428C71240020 @default.
- W2012320428 hasConceptScore W2012320428C86803240 @default.
- W2012320428 hasIssue "48" @default.
- W2012320428 hasLocation W20123204281 @default.
- W2012320428 hasOpenAccess W2012320428 @default.
- W2012320428 hasPrimaryLocation W20123204281 @default.
- W2012320428 hasRelatedWork W1997572516 @default.
- W2012320428 hasRelatedWork W2008575639 @default.
- W2012320428 hasRelatedWork W2016504765 @default.
- W2012320428 hasRelatedWork W2067241804 @default.
- W2012320428 hasRelatedWork W2091456897 @default.
- W2012320428 hasRelatedWork W2327062077 @default.
- W2012320428 hasRelatedWork W2534646354 @default.
- W2012320428 hasRelatedWork W2748592820 @default.
- W2012320428 hasRelatedWork W2922923622 @default.
- W2012320428 hasRelatedWork W2991548894 @default.
- W2012320428 hasVolume "277" @default.
- W2012320428 isParatext "false" @default.
- W2012320428 isRetracted "false" @default.
- W2012320428 magId "2012320428" @default.
- W2012320428 workType "article" @default.