Matches in SemOpenAlex for { <https://semopenalex.org/work/W2012355247> ?p ?o ?g. }
- W2012355247 endingPage "175" @default.
- W2012355247 startingPage "165" @default.
- W2012355247 abstract "We have been developing a computer-aided diagnostic (CAD) scheme for lung nodule detection in order to assist radiologists in the detection of lung cancer in thin-section computed tomography (CT) images.Our database consisted of 117 thin-section CT scans with 153 nodules, obtained from a lung cancer screening program at a Japanese university (85 scans, 91 nodules) and from clinical work at an American university (32 scans, 62 nodules). The database included nodules of different sizes (4-28 mm, mean 10.2 mm), shapes, and patterns (solid and ground-glass opacity (GGO)). Our CAD scheme consisted of modules for lung segmentation, selective nodule enhancement, initial nodule detection, feature extraction, and classification. The selective nodule enhancement filter was a key technique for significant enhancement of nodules and suppression of normal anatomic structures such as blood vessels, which are the main sources of false positives. Use of an automated rule-based classifier for reduction of false positives was another key technique; it resulted in a minimized overtraining effect and an improved classification performance. We used a case-based four-fold cross-validation testing method for evaluation of the performance levels of our computerized detection scheme.Our CAD scheme achieved an overall sensitivity of 86% (small: 76%, medium-sized: 94%, large: 95%; solid: 86%, mixed GGO: 89%, pure GGO: 81%) with 6.6 false positives per scan; an overall sensitivity of 81% (small: 69%, medium-sized: 91%, large: 91%; solid: 79%, mixed GGO: 88%, pure GGO: 81%) with 3.3 false positives per scan; and an overall sensitivity of 75% (small: 60%, medium-sized: 88%, large: 87%; solid: 70%, mixed GGO: 87%, pure GGO: 81%) with 1.6 false positives per scan.The experimental results indicate that our CAD scheme with its two key techniques can achieve a relatively high performance for nodules presenting large variations in size, shape, and pattern." @default.
- W2012355247 created "2016-06-24" @default.
- W2012355247 creator A5069771802 @default.
- W2012355247 creator A5081844561 @default.
- W2012355247 creator A5082886918 @default.
- W2012355247 date "2008-02-01" @default.
- W2012355247 modified "2023-10-16" @default.
- W2012355247 title "Computerized Detection of Lung Nodules in Thin-Section CT Images by Use of Selective Enhancement Filters and an Automated Rule-Based Classifier" @default.
- W2012355247 cites W1969209195 @default.
- W2012355247 cites W1969786749 @default.
- W2012355247 cites W1971997700 @default.
- W2012355247 cites W1972131978 @default.
- W2012355247 cites W1972514162 @default.
- W2012355247 cites W1978015410 @default.
- W2012355247 cites W1987368545 @default.
- W2012355247 cites W2011825255 @default.
- W2012355247 cites W2022284104 @default.
- W2012355247 cites W2030604164 @default.
- W2012355247 cites W2031827337 @default.
- W2012355247 cites W2035374697 @default.
- W2012355247 cites W2037711351 @default.
- W2012355247 cites W2055209856 @default.
- W2012355247 cites W2058765696 @default.
- W2012355247 cites W2060468410 @default.
- W2012355247 cites W2060576022 @default.
- W2012355247 cites W2061863392 @default.
- W2012355247 cites W2085652537 @default.
- W2012355247 cites W2089549968 @default.
- W2012355247 cites W2094769840 @default.
- W2012355247 cites W2095003563 @default.
- W2012355247 cites W2109711012 @default.
- W2012355247 cites W2112563636 @default.
- W2012355247 cites W2112827290 @default.
- W2012355247 cites W2116999286 @default.
- W2012355247 cites W2123927174 @default.
- W2012355247 cites W2124965119 @default.
- W2012355247 cites W2127074647 @default.
- W2012355247 cites W2127681467 @default.
- W2012355247 cites W2132715022 @default.
- W2012355247 cites W2134701276 @default.
- W2012355247 cites W2157469204 @default.
- W2012355247 cites W4251310582 @default.
- W2012355247 cites W4256741478 @default.
- W2012355247 doi "https://doi.org/10.1016/j.acra.2007.09.018" @default.
- W2012355247 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/2266079" @default.
- W2012355247 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/18206615" @default.
- W2012355247 hasPublicationYear "2008" @default.
- W2012355247 type Work @default.
- W2012355247 sameAs 2012355247 @default.
- W2012355247 citedByCount "130" @default.
- W2012355247 countsByYear W20123552472012 @default.
- W2012355247 countsByYear W20123552472013 @default.
- W2012355247 countsByYear W20123552472014 @default.
- W2012355247 countsByYear W20123552472015 @default.
- W2012355247 countsByYear W20123552472016 @default.
- W2012355247 countsByYear W20123552472017 @default.
- W2012355247 countsByYear W20123552472018 @default.
- W2012355247 countsByYear W20123552472019 @default.
- W2012355247 countsByYear W20123552472020 @default.
- W2012355247 countsByYear W20123552472021 @default.
- W2012355247 countsByYear W20123552472022 @default.
- W2012355247 countsByYear W20123552472023 @default.
- W2012355247 crossrefType "journal-article" @default.
- W2012355247 hasAuthorship W2012355247A5069771802 @default.
- W2012355247 hasAuthorship W2012355247A5081844561 @default.
- W2012355247 hasAuthorship W2012355247A5082886918 @default.
- W2012355247 hasBestOaLocation W20123552472 @default.
- W2012355247 hasConcept C121608353 @default.
- W2012355247 hasConcept C126322002 @default.
- W2012355247 hasConcept C126838900 @default.
- W2012355247 hasConcept C127413603 @default.
- W2012355247 hasConcept C142724271 @default.
- W2012355247 hasConcept C151730666 @default.
- W2012355247 hasConcept C154945302 @default.
- W2012355247 hasConcept C194789388 @default.
- W2012355247 hasConcept C199639397 @default.
- W2012355247 hasConcept C2776256026 @default.
- W2012355247 hasConcept C2776731575 @default.
- W2012355247 hasConcept C2777001051 @default.
- W2012355247 hasConcept C2777405583 @default.
- W2012355247 hasConcept C2777714996 @default.
- W2012355247 hasConcept C2779549770 @default.
- W2012355247 hasConcept C2781182431 @default.
- W2012355247 hasConcept C2989005 @default.
- W2012355247 hasConcept C41008148 @default.
- W2012355247 hasConcept C544519230 @default.
- W2012355247 hasConcept C64869954 @default.
- W2012355247 hasConcept C71924100 @default.
- W2012355247 hasConcept C86803240 @default.
- W2012355247 hasConceptScore W2012355247C121608353 @default.
- W2012355247 hasConceptScore W2012355247C126322002 @default.
- W2012355247 hasConceptScore W2012355247C126838900 @default.
- W2012355247 hasConceptScore W2012355247C127413603 @default.
- W2012355247 hasConceptScore W2012355247C142724271 @default.
- W2012355247 hasConceptScore W2012355247C151730666 @default.
- W2012355247 hasConceptScore W2012355247C154945302 @default.
- W2012355247 hasConceptScore W2012355247C194789388 @default.
- W2012355247 hasConceptScore W2012355247C199639397 @default.