Matches in SemOpenAlex for { <https://semopenalex.org/work/W2012502645> ?p ?o ?g. }
- W2012502645 endingPage "1236" @default.
- W2012502645 startingPage "1229" @default.
- W2012502645 abstract "As saline soils dry, the salt in the remaining solution phase is concentrated and the microbes are subjected to both water and osmotic stress. However, little is known about the interactive effect of matric potential (MP) and osmotic potential (OP) on microbial activity and community structure. We conducted an experiment in which two non-saline soils, a sand and a sandy loam, were pre-incubated at optimal water content (for microbial activity) but different osmotic potentials achieved by adding NaCl. The EC of the saturated paste (ECe) ranged between 1.6 and 11.6 dS m−1 in the sand and between 0.6 and 17.7 dS m−1 in the sandy loam. After the 14-day pre-incubation, the soils were dried to different water contents: 25–35 g kg−1 in the sand and 95–200 g kg−1 in the sandy loam. Water potential (WP, the sum of osmotic + matric potential) ranged from −0.7 to −6.8 MPa in the sand and from −0.1 to −4.4 MPa in the sandy loam. After addition of ground pea straw to increase the concentration of readily available substrate, respiration was measured over 14 days and microbial community composition was assessed by phospholipid fatty acid analysis (PLFA) at the end of the experiment. In both soils, cumulative respiration at a given soil water content (WC) decreased with decreasing osmotic potential, but the effect of decreasing water content differed between the two soils. In the sand, cumulative respiration at the two lowest water contents (WC25 and WC28) was always significantly lower than that at the highest water content (WC35). In the sandy loam, cumulative respiration was significantly lower at the lowest water content (WC95) compared to the highest water content (WC200) only in treatments with added salt. The reduction of cumulative respiration at a given WP was similar in the two soils with a 50% reduction compared to the control (optimal water content, no salt added) at WP −3 MPa. In the sand at WP <−2 MPa, the reduction in fungal fatty acids was greater than that of bacterial fatty acids whereas in the sandy loam, the response of bacteria and fungi to decreasing WP was similar. In both soils, microbial biomass decreased by 35–50% as WP decreased to about −2 MPa but then remained stable with further decreases of WP. Microbial community composition changed with WP in both soils. Our results suggest that there are two strategies by which microbes respond to water potential. A decrease in WP up to −2 MPa kills a proportion of the microbial community, but the remaining microbes adapt and maintain their activity per unit biomass. At lower WP however, the adaptation mechanisms are not sufficient and although the microbes survive, their activity per unit biomass is reduced." @default.
- W2012502645 created "2016-06-24" @default.
- W2012502645 creator A5039893514 @default.
- W2012502645 creator A5063620162 @default.
- W2012502645 creator A5065232070 @default.
- W2012502645 date "2011-06-01" @default.
- W2012502645 modified "2023-10-02" @default.
- W2012502645 title "Soil microbial activity and community composition: Impact of changes in matric and osmotic potential" @default.
- W2012502645 cites W147126354 @default.
- W2012502645 cites W1496778111 @default.
- W2012502645 cites W1527853429 @default.
- W2012502645 cites W1822106706 @default.
- W2012502645 cites W1841924298 @default.
- W2012502645 cites W1848443734 @default.
- W2012502645 cites W1963957394 @default.
- W2012502645 cites W1965969921 @default.
- W2012502645 cites W1966869001 @default.
- W2012502645 cites W1967634501 @default.
- W2012502645 cites W1971086218 @default.
- W2012502645 cites W1980911356 @default.
- W2012502645 cites W1982836372 @default.
- W2012502645 cites W1989125908 @default.
- W2012502645 cites W1993462377 @default.
- W2012502645 cites W2015289708 @default.
- W2012502645 cites W2018797136 @default.
- W2012502645 cites W2023650125 @default.
- W2012502645 cites W2028691265 @default.
- W2012502645 cites W2036018556 @default.
- W2012502645 cites W2053033165 @default.
- W2012502645 cites W2057662146 @default.
- W2012502645 cites W2058021523 @default.
- W2012502645 cites W2059075856 @default.
- W2012502645 cites W2061373271 @default.
- W2012502645 cites W2068685637 @default.
- W2012502645 cites W2073865573 @default.
- W2012502645 cites W2081264397 @default.
- W2012502645 cites W2090307634 @default.
- W2012502645 cites W2097250648 @default.
- W2012502645 cites W2098432852 @default.
- W2012502645 cites W2109616498 @default.
- W2012502645 cites W2111749200 @default.
- W2012502645 cites W2114510047 @default.
- W2012502645 cites W2118082789 @default.
- W2012502645 cites W2119797678 @default.
- W2012502645 cites W2125692739 @default.
- W2012502645 cites W2132098839 @default.
- W2012502645 cites W2134561137 @default.
- W2012502645 cites W2148534681 @default.
- W2012502645 cites W4231685787 @default.
- W2012502645 cites W4243858879 @default.
- W2012502645 cites W4249589434 @default.
- W2012502645 doi "https://doi.org/10.1016/j.soilbio.2011.02.012" @default.
- W2012502645 hasPublicationYear "2011" @default.
- W2012502645 type Work @default.
- W2012502645 sameAs 2012502645 @default.
- W2012502645 citedByCount "139" @default.
- W2012502645 countsByYear W20125026452012 @default.
- W2012502645 countsByYear W20125026452013 @default.
- W2012502645 countsByYear W20125026452014 @default.
- W2012502645 countsByYear W20125026452015 @default.
- W2012502645 countsByYear W20125026452016 @default.
- W2012502645 countsByYear W20125026452017 @default.
- W2012502645 countsByYear W20125026452018 @default.
- W2012502645 countsByYear W20125026452019 @default.
- W2012502645 countsByYear W20125026452020 @default.
- W2012502645 countsByYear W20125026452021 @default.
- W2012502645 countsByYear W20125026452022 @default.
- W2012502645 countsByYear W20125026452023 @default.
- W2012502645 crossrefType "journal-article" @default.
- W2012502645 hasAuthorship W2012502645A5039893514 @default.
- W2012502645 hasAuthorship W2012502645A5063620162 @default.
- W2012502645 hasAuthorship W2012502645A5065232070 @default.
- W2012502645 hasConcept C113578266 @default.
- W2012502645 hasConcept C127313418 @default.
- W2012502645 hasConcept C159390177 @default.
- W2012502645 hasConcept C159750122 @default.
- W2012502645 hasConcept C185592680 @default.
- W2012502645 hasConcept C187320778 @default.
- W2012502645 hasConcept C24939127 @default.
- W2012502645 hasConcept C30335454 @default.
- W2012502645 hasConcept C39432304 @default.
- W2012502645 hasConcept C55493867 @default.
- W2012502645 hasConcept C6557445 @default.
- W2012502645 hasConcept C86803240 @default.
- W2012502645 hasConcept C9603476 @default.
- W2012502645 hasConceptScore W2012502645C113578266 @default.
- W2012502645 hasConceptScore W2012502645C127313418 @default.
- W2012502645 hasConceptScore W2012502645C159390177 @default.
- W2012502645 hasConceptScore W2012502645C159750122 @default.
- W2012502645 hasConceptScore W2012502645C185592680 @default.
- W2012502645 hasConceptScore W2012502645C187320778 @default.
- W2012502645 hasConceptScore W2012502645C24939127 @default.
- W2012502645 hasConceptScore W2012502645C30335454 @default.
- W2012502645 hasConceptScore W2012502645C39432304 @default.
- W2012502645 hasConceptScore W2012502645C55493867 @default.
- W2012502645 hasConceptScore W2012502645C6557445 @default.
- W2012502645 hasConceptScore W2012502645C86803240 @default.
- W2012502645 hasConceptScore W2012502645C9603476 @default.