Matches in SemOpenAlex for { <https://semopenalex.org/work/W2012609801> ?p ?o ?g. }
- W2012609801 endingPage "31" @default.
- W2012609801 startingPage "1" @default.
- W2012609801 abstract "Most time series data mining algorithms use similarity search as a core subroutine, and thus the time taken for similarity search is the bottleneck for virtually all time series data mining algorithms, including classification, clustering, motif discovery, anomaly detection, and so on. The difficulty of scaling a search to large datasets explains to a great extent why most academic work on time series data mining has plateaued at considering a few millions of time series objects, while much of industry and science sits on billions of time series objects waiting to be explored. In this work we show that by using a combination of four novel ideas we can search and mine massive time series for the first time. We demonstrate the following unintuitive fact: in large datasets we can exactly search under Dynamic Time Warping (DTW) much more quickly than the current state-of-the-art Euclidean distance search algorithms. We demonstrate our work on the largest set of time series experiments ever attempted. In particular, the largest dataset we consider is larger than the combined size of all of the time series datasets considered in all data mining papers ever published. We explain how our ideas allow us to solve higher-level time series data mining problems such as motif discovery and clustering at scales that would otherwise be untenable. Moreover, we show how our ideas allow us to efficiently support the uniform scaling distance measure, a measure whose utility seems to be underappreciated, but which we demonstrate here. In addition to mining massive datasets with up to one trillion datapoints, we will show that our ideas also have implications for real-time monitoring of data streams, allowing us to handle much faster arrival rates and/or use cheaper and lower powered devices than are currently possible." @default.
- W2012609801 created "2016-06-24" @default.
- W2012609801 creator A5015547365 @default.
- W2012609801 creator A5025138797 @default.
- W2012609801 creator A5029634834 @default.
- W2012609801 creator A5044070973 @default.
- W2012609801 creator A5057110882 @default.
- W2012609801 creator A5063973380 @default.
- W2012609801 creator A5078245746 @default.
- W2012609801 creator A5090038584 @default.
- W2012609801 date "2013-09-01" @default.
- W2012609801 modified "2023-10-12" @default.
- W2012609801 title "Addressing Big Data Time Series" @default.
- W2012609801 cites W1853995153 @default.
- W2012609801 cites W1968010112 @default.
- W2012609801 cites W1973222433 @default.
- W2012609801 cites W1981055269 @default.
- W2012609801 cites W1993352593 @default.
- W2012609801 cites W1995504712 @default.
- W2012609801 cites W1999352753 @default.
- W2012609801 cites W2012010763 @default.
- W2012609801 cites W2024081861 @default.
- W2012609801 cites W2029438113 @default.
- W2012609801 cites W2034528422 @default.
- W2012609801 cites W2045502823 @default.
- W2012609801 cites W2049120089 @default.
- W2012609801 cites W2062506051 @default.
- W2012609801 cites W2069797735 @default.
- W2012609801 cites W2072708938 @default.
- W2012609801 cites W2076424822 @default.
- W2012609801 cites W2077720176 @default.
- W2012609801 cites W2091921805 @default.
- W2012609801 cites W2097248932 @default.
- W2012609801 cites W2103932490 @default.
- W2012609801 cites W2125201599 @default.
- W2012609801 cites W2129330015 @default.
- W2012609801 cites W2139440613 @default.
- W2012609801 cites W2148682905 @default.
- W2012609801 cites W2151937625 @default.
- W2012609801 cites W2156946747 @default.
- W2012609801 cites W2169004268 @default.
- W2012609801 cites W3125923948 @default.
- W2012609801 cites W4244543661 @default.
- W2012609801 doi "https://doi.org/10.1145/2500489" @default.
- W2012609801 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6790126" @default.
- W2012609801 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31607834" @default.
- W2012609801 hasPublicationYear "2013" @default.
- W2012609801 type Work @default.
- W2012609801 sameAs 2012609801 @default.
- W2012609801 citedByCount "108" @default.
- W2012609801 countsByYear W20126098012014 @default.
- W2012609801 countsByYear W20126098012015 @default.
- W2012609801 countsByYear W20126098012016 @default.
- W2012609801 countsByYear W20126098012017 @default.
- W2012609801 countsByYear W20126098012018 @default.
- W2012609801 countsByYear W20126098012019 @default.
- W2012609801 countsByYear W20126098012020 @default.
- W2012609801 countsByYear W20126098012021 @default.
- W2012609801 countsByYear W20126098012022 @default.
- W2012609801 countsByYear W20126098012023 @default.
- W2012609801 crossrefType "journal-article" @default.
- W2012609801 hasAuthorship W2012609801A5015547365 @default.
- W2012609801 hasAuthorship W2012609801A5025138797 @default.
- W2012609801 hasAuthorship W2012609801A5029634834 @default.
- W2012609801 hasAuthorship W2012609801A5044070973 @default.
- W2012609801 hasAuthorship W2012609801A5057110882 @default.
- W2012609801 hasAuthorship W2012609801A5063973380 @default.
- W2012609801 hasAuthorship W2012609801A5078245746 @default.
- W2012609801 hasAuthorship W2012609801A5090038584 @default.
- W2012609801 hasBestOaLocation W20126098011 @default.
- W2012609801 hasConcept C111919701 @default.
- W2012609801 hasConcept C116738811 @default.
- W2012609801 hasConcept C119857082 @default.
- W2012609801 hasConcept C120174047 @default.
- W2012609801 hasConcept C124101348 @default.
- W2012609801 hasConcept C143724316 @default.
- W2012609801 hasConcept C149635348 @default.
- W2012609801 hasConcept C151406439 @default.
- W2012609801 hasConcept C151730666 @default.
- W2012609801 hasConcept C154945302 @default.
- W2012609801 hasConcept C187191949 @default.
- W2012609801 hasConcept C2776517306 @default.
- W2012609801 hasConcept C2780513914 @default.
- W2012609801 hasConcept C41008148 @default.
- W2012609801 hasConcept C73555534 @default.
- W2012609801 hasConcept C739882 @default.
- W2012609801 hasConcept C75684735 @default.
- W2012609801 hasConcept C86803240 @default.
- W2012609801 hasConcept C88516994 @default.
- W2012609801 hasConcept C96147967 @default.
- W2012609801 hasConceptScore W2012609801C111919701 @default.
- W2012609801 hasConceptScore W2012609801C116738811 @default.
- W2012609801 hasConceptScore W2012609801C119857082 @default.
- W2012609801 hasConceptScore W2012609801C120174047 @default.
- W2012609801 hasConceptScore W2012609801C124101348 @default.
- W2012609801 hasConceptScore W2012609801C143724316 @default.
- W2012609801 hasConceptScore W2012609801C149635348 @default.
- W2012609801 hasConceptScore W2012609801C151406439 @default.