Matches in SemOpenAlex for { <https://semopenalex.org/work/W2012667110> ?p ?o ?g. }
Showing items 1 to 68 of
68
with 100 items per page.
- W2012667110 abstract "Semi-automatic/automatic road extraction from remote sensing imagery is one of the hot topics in the field of remote sensing, surveying and mapping and computer vision, etc. Traditional methods based on Marr's Computation Theory of Vision follow the pattern of local-to-global features extraction. However, in high resolution image, the local features such as road boundary and road width are easily affected by noise and make the traditional extraction process based on edge extraction and template matching more difficult. At the same time, it is inconsistent with the human cognitive process during the visual interpretation. For all of the above reasons, the paper develop a new road extraction method according with human cognitive process. It is a kind of top-down road extraction strategy based on global precedence in the background of GIS data updating. The proposed methodology consists of four parts: 1) extract road priori topological information from the now available GIS data; 2) extract road morphological skeleton; 3) built the global features of road in the image space using automatic approximation conflation between road vector and road skeleton; 4) extract the local features in the high resolution images under the constraints of global features. The global topological approximation method based on Network Snakes algorithm is the focus in the paper. With the experiment on IKONOS image of Weihai city, the method was confirmed to be able to produce acceptable road global characteristics and local features (such as centerlines)." @default.
- W2012667110 created "2016-06-24" @default.
- W2012667110 creator A5022499603 @default.
- W2012667110 creator A5045799873 @default.
- W2012667110 creator A5075296583 @default.
- W2012667110 date "2014-06-01" @default.
- W2012667110 modified "2023-09-24" @default.
- W2012667110 title "Research on road information extraction from high resolution imagery based on global precedence" @default.
- W2012667110 cites W2014788144 @default.
- W2012667110 cites W2032734169 @default.
- W2012667110 cites W2104095591 @default.
- W2012667110 cites W2109828971 @default.
- W2012667110 cites W2145803225 @default.
- W2012667110 doi "https://doi.org/10.1109/eorsa.2014.6927868" @default.
- W2012667110 hasPublicationYear "2014" @default.
- W2012667110 type Work @default.
- W2012667110 sameAs 2012667110 @default.
- W2012667110 citedByCount "4" @default.
- W2012667110 countsByYear W20126671102015 @default.
- W2012667110 countsByYear W20126671102022 @default.
- W2012667110 crossrefType "proceedings-article" @default.
- W2012667110 hasAuthorship W2012667110A5022499603 @default.
- W2012667110 hasAuthorship W2012667110A5045799873 @default.
- W2012667110 hasAuthorship W2012667110A5075296583 @default.
- W2012667110 hasBestOaLocation W20126671101 @default.
- W2012667110 hasConcept C124101348 @default.
- W2012667110 hasConcept C138268822 @default.
- W2012667110 hasConcept C154945302 @default.
- W2012667110 hasConcept C185592680 @default.
- W2012667110 hasConcept C195807954 @default.
- W2012667110 hasConcept C205649164 @default.
- W2012667110 hasConcept C3020199158 @default.
- W2012667110 hasConcept C31972630 @default.
- W2012667110 hasConcept C41008148 @default.
- W2012667110 hasConcept C43617362 @default.
- W2012667110 hasConcept C4725764 @default.
- W2012667110 hasConcept C52622490 @default.
- W2012667110 hasConcept C62649853 @default.
- W2012667110 hasConceptScore W2012667110C124101348 @default.
- W2012667110 hasConceptScore W2012667110C138268822 @default.
- W2012667110 hasConceptScore W2012667110C154945302 @default.
- W2012667110 hasConceptScore W2012667110C185592680 @default.
- W2012667110 hasConceptScore W2012667110C195807954 @default.
- W2012667110 hasConceptScore W2012667110C205649164 @default.
- W2012667110 hasConceptScore W2012667110C3020199158 @default.
- W2012667110 hasConceptScore W2012667110C31972630 @default.
- W2012667110 hasConceptScore W2012667110C41008148 @default.
- W2012667110 hasConceptScore W2012667110C43617362 @default.
- W2012667110 hasConceptScore W2012667110C4725764 @default.
- W2012667110 hasConceptScore W2012667110C52622490 @default.
- W2012667110 hasConceptScore W2012667110C62649853 @default.
- W2012667110 hasLocation W20126671101 @default.
- W2012667110 hasOpenAccess W2012667110 @default.
- W2012667110 hasPrimaryLocation W20126671101 @default.
- W2012667110 hasRelatedWork W1975958833 @default.
- W2012667110 hasRelatedWork W1999222583 @default.
- W2012667110 hasRelatedWork W2020205983 @default.
- W2012667110 hasRelatedWork W2076289882 @default.
- W2012667110 hasRelatedWork W2078130820 @default.
- W2012667110 hasRelatedWork W2099597042 @default.
- W2012667110 hasRelatedWork W2100100476 @default.
- W2012667110 hasRelatedWork W2143279446 @default.
- W2012667110 hasRelatedWork W2154461499 @default.
- W2012667110 hasRelatedWork W2954728509 @default.
- W2012667110 isParatext "false" @default.
- W2012667110 isRetracted "false" @default.
- W2012667110 magId "2012667110" @default.
- W2012667110 workType "article" @default.