Matches in SemOpenAlex for { <https://semopenalex.org/work/W2012776890> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W2012776890 endingPage "2038" @default.
- W2012776890 startingPage "2026" @default.
- W2012776890 abstract "In this article we extend our previous analysis of a cold beam tube vacuum in a superconducting proton collider to include ion desorption in addition to thermal desorption and synchrotron radiation induced photodesorption. The ion desorption terms introduce the possibility of vacuum instability. This is similar to the classical room temperature case but is now modified by the inclusion of ion desorption coefficients for cryosorbed (physisorbed) molecules which can greatly exceed the coefficients for tightly bound molecules. The sojourn time concept for physisorbed H2 is generalized to include photodesorption and ion desorption as well as the usually considered thermal desorption. The ion desorption rate is density dependent and divergent so at the onset of instability the sojourn time goes to zero. Experimental data are used to evaluate the H2 sojourn time for the conditions of the Large Hadron Collider (LHC) and the situation is found to be stable. The sojourn time is dominated by photodesorption for surface density s(H2) less than a monolayer and by thermal desorption for s(H2) greater than a monolayer. For a few percent of a monolayer, characteristic of a beam screen, the photodesorption rate exceeds the ion desorption rate by more than two orders of magnitude. The photodesorption rate corresponds to a sojourn time of approximately 100 s. The article then turns to the evaluation of stability margins and the inclusion of gases heavier than H2 (CO, CO2, and CH4), where ion desorption introduces coupling between molecular species. Stability conditions are worked out for a simple cold beam tube, a cold beam tube pumped from the ends, and a cold beam tube with a coaxial perforated beam screen. In each case a simple inequality for stability of a single component is replaced by a determinant that must be greater than zero for a gas mixture. A connection with the general theory of feedback stability is made and it is shown that the gains of the diagonal uncoupled feedback loops are first order in the ion desorption coefficients whereas the gains of the off-diagonal coupled feedback loops are second order and higher. For this reason it turns out that in practical cases stability is dominated by the uncoupled diagonal elements and the inverse of the largest first-order closed loop gain is a useful estimate of the margin of stability. In contrast to the case of a simple cold beam tube, the stability condition for a beam screen does not contain the desorption coefficient for physisorbed molecules, even when the screen temperature is low enough that there is a finite surface density of them on the screen surface. Consequently there does not appear to be any particular advantage to operating the beam screen at a high enough temperature to avoid physisorption. Numerical estimates of ion desorption stability are given for a number of cases relevant to the LHC and all of the ones likely to be encountered were found to be stable. The most important case, a 1% transparency beam screen at ∼4.2 K, was found to have a stability safety margin of approximately 17 determined by ion desorption of CO. Ion desorption of H2 is about a factor of 75 less stringent than CO. For these estimates the beam tube surface was assumed to be chemically cleaned but otherwise untreated, for example, by a vacuum bakeout or by glow discharge cleaning." @default.
- W2012776890 created "2016-06-24" @default.
- W2012776890 creator A5021545562 @default.
- W2012776890 date "1996-07-01" @default.
- W2012776890 modified "2023-10-18" @default.
- W2012776890 title "Ion desorption stability in superconducting high energy physics proton colliders" @default.
- W2012776890 doi "https://doi.org/10.1116/1.580078" @default.
- W2012776890 hasPublicationYear "1996" @default.
- W2012776890 type Work @default.
- W2012776890 sameAs 2012776890 @default.
- W2012776890 citedByCount "14" @default.
- W2012776890 countsByYear W20127768902012 @default.
- W2012776890 countsByYear W20127768902019 @default.
- W2012776890 countsByYear W20127768902020 @default.
- W2012776890 countsByYear W20127768902021 @default.
- W2012776890 countsByYear W20127768902022 @default.
- W2012776890 crossrefType "journal-article" @default.
- W2012776890 hasAuthorship W2012776890A5021545562 @default.
- W2012776890 hasBestOaLocation W20127768903 @default.
- W2012776890 hasConcept C113196181 @default.
- W2012776890 hasConcept C120665830 @default.
- W2012776890 hasConcept C121332964 @default.
- W2012776890 hasConcept C145148216 @default.
- W2012776890 hasConcept C147789679 @default.
- W2012776890 hasConcept C150394285 @default.
- W2012776890 hasConcept C155916967 @default.
- W2012776890 hasConcept C162711632 @default.
- W2012776890 hasConcept C168834538 @default.
- W2012776890 hasConcept C178790620 @default.
- W2012776890 hasConcept C184779094 @default.
- W2012776890 hasConcept C185544564 @default.
- W2012776890 hasConcept C185592680 @default.
- W2012776890 hasConcept C2781059571 @default.
- W2012776890 hasConcept C50774322 @default.
- W2012776890 hasConcept C54516573 @default.
- W2012776890 hasConcept C55493867 @default.
- W2012776890 hasConcept C7070889 @default.
- W2012776890 hasConceptScore W2012776890C113196181 @default.
- W2012776890 hasConceptScore W2012776890C120665830 @default.
- W2012776890 hasConceptScore W2012776890C121332964 @default.
- W2012776890 hasConceptScore W2012776890C145148216 @default.
- W2012776890 hasConceptScore W2012776890C147789679 @default.
- W2012776890 hasConceptScore W2012776890C150394285 @default.
- W2012776890 hasConceptScore W2012776890C155916967 @default.
- W2012776890 hasConceptScore W2012776890C162711632 @default.
- W2012776890 hasConceptScore W2012776890C168834538 @default.
- W2012776890 hasConceptScore W2012776890C178790620 @default.
- W2012776890 hasConceptScore W2012776890C184779094 @default.
- W2012776890 hasConceptScore W2012776890C185544564 @default.
- W2012776890 hasConceptScore W2012776890C185592680 @default.
- W2012776890 hasConceptScore W2012776890C2781059571 @default.
- W2012776890 hasConceptScore W2012776890C50774322 @default.
- W2012776890 hasConceptScore W2012776890C54516573 @default.
- W2012776890 hasConceptScore W2012776890C55493867 @default.
- W2012776890 hasConceptScore W2012776890C7070889 @default.
- W2012776890 hasIssue "4" @default.
- W2012776890 hasLocation W20127768901 @default.
- W2012776890 hasLocation W20127768902 @default.
- W2012776890 hasLocation W20127768903 @default.
- W2012776890 hasLocation W20127768904 @default.
- W2012776890 hasLocation W20127768905 @default.
- W2012776890 hasOpenAccess W2012776890 @default.
- W2012776890 hasPrimaryLocation W20127768901 @default.
- W2012776890 hasRelatedWork W1982450184 @default.
- W2012776890 hasRelatedWork W1982832450 @default.
- W2012776890 hasRelatedWork W1999223662 @default.
- W2012776890 hasRelatedWork W2013902078 @default.
- W2012776890 hasRelatedWork W2056348120 @default.
- W2012776890 hasRelatedWork W2057022216 @default.
- W2012776890 hasRelatedWork W2069987993 @default.
- W2012776890 hasRelatedWork W2093960772 @default.
- W2012776890 hasRelatedWork W2741693092 @default.
- W2012776890 hasRelatedWork W2770248008 @default.
- W2012776890 hasVolume "14" @default.
- W2012776890 isParatext "false" @default.
- W2012776890 isRetracted "false" @default.
- W2012776890 magId "2012776890" @default.
- W2012776890 workType "article" @default.