Matches in SemOpenAlex for { <https://semopenalex.org/work/W2012777573> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W2012777573 endingPage "205" @default.
- W2012777573 startingPage "194" @default.
- W2012777573 abstract "Using agent-based simulation experiments, we assess the relative performance of two Reinforcement Learning System (RLS) paradigms – the classical Learning Classifier System (LCS) and an enhancement, the Extended Classifier System (XCS) – in the context of playing the Iterated Prisoner's Dilemma (IPD) game. In prior research, the XCS outperforms the LCS in solving the Animats-and-Maze and Boolean Multiplexer test problems. Our work has overlaps with and is an extension of such efforts in that it allows assessment of each system's ability to (a) cope with delayed environmental feedback, (b) evolve irrational choice as the optimal behavior, and (c) cope with unpredictable input from the environment. We find that while the XCS is considerably superior to the LCS, in terms of four key performance metrics, in playing IPD games against a deterministic, reactive game-playing agent (Tit-for-Tat), the LCS does better against an unpredictable opponent (Rand) albeit with significant evolutionary effort. Further, upon examining each XCS enhancement in isolation, we see that specific LCS variants equipped with a single XCS feature, do better than the traditional LCS model and/or the XCS model in terms of particular metrics against both types of opponents but, again, usually with greater evolutionary effort. This suggests that if offline, rather than online, performance and specific performance goals are the focus, then one may construct relatively-simpler LCS variants rather than full-fledged XCS systems. Further assessments using LCS variants equipped with combinations of XCS features should help better comprehend the synergistic impacts of these features on performance in the IPD." @default.
- W2012777573 created "2016-06-24" @default.
- W2012777573 creator A5041092327 @default.
- W2012777573 creator A5060523961 @default.
- W2012777573 date "2013-04-01" @default.
- W2012777573 modified "2023-09-25" @default.
- W2012777573 title "An examination of evolved behavior in two reinforcement learning systems" @default.
- W2012777573 cites W1239058172 @default.
- W2012777573 cites W1493919779 @default.
- W2012777573 cites W1497256448 @default.
- W2012777573 cites W1506349967 @default.
- W2012777573 cites W1521089255 @default.
- W2012777573 cites W1543488019 @default.
- W2012777573 cites W1569702761 @default.
- W2012777573 cites W1589018387 @default.
- W2012777573 cites W190718632 @default.
- W2012777573 cites W1989101984 @default.
- W2012777573 cites W1999128321 @default.
- W2012777573 cites W1999846231 @default.
- W2012777573 cites W2000659199 @default.
- W2012777573 cites W2009718765 @default.
- W2012777573 cites W2037682348 @default.
- W2012777573 cites W2052153221 @default.
- W2012777573 cites W2062663664 @default.
- W2012777573 cites W2063859635 @default.
- W2012777573 cites W2110216302 @default.
- W2012777573 cites W2112758441 @default.
- W2012777573 cites W2122410182 @default.
- W2012777573 cites W2134367663 @default.
- W2012777573 cites W2139281265 @default.
- W2012777573 cites W2163052928 @default.
- W2012777573 cites W2286297822 @default.
- W2012777573 cites W3023540311 @default.
- W2012777573 cites W32805393 @default.
- W2012777573 cites W2168268199 @default.
- W2012777573 doi "https://doi.org/10.1016/j.dss.2013.01.019" @default.
- W2012777573 hasPublicationYear "2013" @default.
- W2012777573 type Work @default.
- W2012777573 sameAs 2012777573 @default.
- W2012777573 citedByCount "6" @default.
- W2012777573 countsByYear W20127775732013 @default.
- W2012777573 countsByYear W20127775732015 @default.
- W2012777573 countsByYear W20127775732017 @default.
- W2012777573 countsByYear W20127775732019 @default.
- W2012777573 crossrefType "journal-article" @default.
- W2012777573 hasAuthorship W2012777573A5041092327 @default.
- W2012777573 hasAuthorship W2012777573A5060523961 @default.
- W2012777573 hasConcept C119857082 @default.
- W2012777573 hasConcept C154945302 @default.
- W2012777573 hasConcept C199190896 @default.
- W2012777573 hasConcept C41008148 @default.
- W2012777573 hasConcept C95623464 @default.
- W2012777573 hasConcept C97541855 @default.
- W2012777573 hasConceptScore W2012777573C119857082 @default.
- W2012777573 hasConceptScore W2012777573C154945302 @default.
- W2012777573 hasConceptScore W2012777573C199190896 @default.
- W2012777573 hasConceptScore W2012777573C41008148 @default.
- W2012777573 hasConceptScore W2012777573C95623464 @default.
- W2012777573 hasConceptScore W2012777573C97541855 @default.
- W2012777573 hasIssue "1" @default.
- W2012777573 hasLocation W20127775731 @default.
- W2012777573 hasOpenAccess W2012777573 @default.
- W2012777573 hasPrimaryLocation W20127775731 @default.
- W2012777573 hasRelatedWork W1479873353 @default.
- W2012777573 hasRelatedWork W1803413727 @default.
- W2012777573 hasRelatedWork W2557694176 @default.
- W2012777573 hasRelatedWork W2618289908 @default.
- W2012777573 hasRelatedWork W2961085424 @default.
- W2012777573 hasRelatedWork W3022038857 @default.
- W2012777573 hasRelatedWork W3200179079 @default.
- W2012777573 hasRelatedWork W4249229055 @default.
- W2012777573 hasRelatedWork W4306321456 @default.
- W2012777573 hasRelatedWork W4319083788 @default.
- W2012777573 hasVolume "55" @default.
- W2012777573 isParatext "false" @default.
- W2012777573 isRetracted "false" @default.
- W2012777573 magId "2012777573" @default.
- W2012777573 workType "article" @default.