Matches in SemOpenAlex for { <https://semopenalex.org/work/W2012794026> ?p ?o ?g. }
- W2012794026 endingPage "976" @default.
- W2012794026 startingPage "959" @default.
- W2012794026 abstract "The cellular uptake and laminar distribution of tritium-labeled gamma-aminobutyrate, aspartate, glutamate and glycine were examined in the primary visual cortex of squirrel monkeys. The purpose was to correlate the distribution of these labeled neurons with their level of cytochrome oxidase activity, particularly in laminae II-III (puffs) and adjacent non-puff regions. In general, tritium-labeled neurons that had either high or low levels of cytochrome oxidase activity were present in all laminae with each amino acid tested; however, their density varied between laminae and with the amino acid injected. Specifically, in laminae II-III, very few neurons were labelled with either of the putative excitatory amino acids (aspartate and glutamate). An increased uptake for both was observed in lamina IVC, with the greatest increase for each occurring in laminae V and VI. Significantly more neurons in each lamina were labeled with the putative inhibitory transmitters (gamma-aminobutyrate and glycine) than with either aspartate or glutamate. gamma-Aminobutyrate-labeled neurons were more prevalent in lamina II than III, and an increase in labeling was observed in laminae IV-VI, with the most prominent increase found in laminae V and VI. Glycine-labeled neurons were larger, more uniformly distributed and more abundant throughout all cortical laminae than those labeled with the other amino acids. Significantly more gamma-aminobutyrate- and glycine-labeled neurons were found in the puff regions than in the non-puff areas. No difference was found between puff and non-puff regions for the tritium-labeled leucine controls. Labeled neurons included stellate, fusiform and pyramidal-shaped cells of varying sizes; however, gamma-aminobutyrate-labeled pyramidal cells were not observed outside of the intense injection site. Large glycine-labeled cytochrome-oxidase-reactive pyramidal cells (24-32 micron in diameter) were present at the boundary between laminae V and VI. In addition, a row of large glycine-labeled, fusiform neurons were present in lamina IVB. With each amino acid injected, the tritium-labeled neurons that were darkly reactive for cytochrome oxidase were, on average, larger than the tritium-labeled neurons that were only lightly reactive for cytochrome oxidase. Thus, each of the four amino acids tested had its unique pattern of distribution in the primate striate cortex. Whether one or all of them served as neurotransmitter(s) for distinct neuronal groups is beyond the scope of this study. Glycine, in particular, might be used in part or in whole for metabolic purposes.(ABSTRACT TRUNCATED AT 400 WORDS)" @default.
- W2012794026 created "2016-06-24" @default.
- W2012794026 creator A5014688710 @default.
- W2012794026 creator A5053646636 @default.
- W2012794026 date "1985-08-01" @default.
- W2012794026 modified "2023-09-25" @default.
- W2012794026 title "Correlation between cytochrome oxidase staining and the uptake and laminar distribution of tritiated aspartate, glutamate, γ-aminobutyrate and glycine in the striate cortex of the squirrel monkey" @default.
- W2012794026 cites W1839928645 @default.
- W2012794026 cites W1951338962 @default.
- W2012794026 cites W1952172782 @default.
- W2012794026 cites W1957209685 @default.
- W2012794026 cites W1963615243 @default.
- W2012794026 cites W1966924926 @default.
- W2012794026 cites W1971516005 @default.
- W2012794026 cites W1971627924 @default.
- W2012794026 cites W1971637773 @default.
- W2012794026 cites W1972478580 @default.
- W2012794026 cites W1973125791 @default.
- W2012794026 cites W1974447763 @default.
- W2012794026 cites W1977448784 @default.
- W2012794026 cites W1978737407 @default.
- W2012794026 cites W1980687109 @default.
- W2012794026 cites W1980945615 @default.
- W2012794026 cites W1981114854 @default.
- W2012794026 cites W1981604210 @default.
- W2012794026 cites W1982879661 @default.
- W2012794026 cites W1984091029 @default.
- W2012794026 cites W1985079348 @default.
- W2012794026 cites W1986216920 @default.
- W2012794026 cites W1986517387 @default.
- W2012794026 cites W1989400631 @default.
- W2012794026 cites W1995284493 @default.
- W2012794026 cites W1996922525 @default.
- W2012794026 cites W2002376394 @default.
- W2012794026 cites W2005162127 @default.
- W2012794026 cites W2005170508 @default.
- W2012794026 cites W2006311235 @default.
- W2012794026 cites W2013920442 @default.
- W2012794026 cites W2015282923 @default.
- W2012794026 cites W2021034814 @default.
- W2012794026 cites W2021053592 @default.
- W2012794026 cites W2021201177 @default.
- W2012794026 cites W2024904718 @default.
- W2012794026 cites W2025540158 @default.
- W2012794026 cites W2027396587 @default.
- W2012794026 cites W2027718916 @default.
- W2012794026 cites W2028066020 @default.
- W2012794026 cites W2031926517 @default.
- W2012794026 cites W2031957090 @default.
- W2012794026 cites W2039030743 @default.
- W2012794026 cites W2045772673 @default.
- W2012794026 cites W2047302324 @default.
- W2012794026 cites W2057477991 @default.
- W2012794026 cites W2072154749 @default.
- W2012794026 cites W2074870180 @default.
- W2012794026 cites W2075697217 @default.
- W2012794026 cites W2075822968 @default.
- W2012794026 cites W2076286543 @default.
- W2012794026 cites W2078949357 @default.
- W2012794026 cites W2084261750 @default.
- W2012794026 cites W2086303292 @default.
- W2012794026 cites W2087049364 @default.
- W2012794026 cites W2087288687 @default.
- W2012794026 cites W2088776728 @default.
- W2012794026 cites W2092065659 @default.
- W2012794026 cites W2095618067 @default.
- W2012794026 cites W2119171402 @default.
- W2012794026 cites W2171957708 @default.
- W2012794026 cites W2417443552 @default.
- W2012794026 cites W4256134941 @default.
- W2012794026 cites W4299311003 @default.
- W2012794026 cites W971983489 @default.
- W2012794026 doi "https://doi.org/10.1016/0306-4522(85)90246-5" @default.
- W2012794026 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/2413391" @default.
- W2012794026 hasPublicationYear "1985" @default.
- W2012794026 type Work @default.
- W2012794026 sameAs 2012794026 @default.
- W2012794026 citedByCount "21" @default.
- W2012794026 countsByYear W20127940262013 @default.
- W2012794026 crossrefType "journal-article" @default.
- W2012794026 hasAuthorship W2012794026A5014688710 @default.
- W2012794026 hasAuthorship W2012794026A5053646636 @default.
- W2012794026 hasConcept C123249941 @default.
- W2012794026 hasConcept C12554922 @default.
- W2012794026 hasConcept C170493617 @default.
- W2012794026 hasConcept C181199279 @default.
- W2012794026 hasConcept C185592680 @default.
- W2012794026 hasConcept C2777756961 @default.
- W2012794026 hasConcept C515207424 @default.
- W2012794026 hasConcept C55493867 @default.
- W2012794026 hasConcept C61174792 @default.
- W2012794026 hasConcept C86803240 @default.
- W2012794026 hasConceptScore W2012794026C123249941 @default.
- W2012794026 hasConceptScore W2012794026C12554922 @default.
- W2012794026 hasConceptScore W2012794026C170493617 @default.
- W2012794026 hasConceptScore W2012794026C181199279 @default.
- W2012794026 hasConceptScore W2012794026C185592680 @default.
- W2012794026 hasConceptScore W2012794026C2777756961 @default.