Matches in SemOpenAlex for { <https://semopenalex.org/work/W2012912681> ?p ?o ?g. }
Showing items 1 to 57 of
57
with 100 items per page.
- W2012912681 abstract "Automatic target detection in a radar image represents a complicated task, particularly when assessing a battlefield situation over large areas to locate individual targets in the presence of heavy returns, or ’clutter.’ Various statistical approaches have been proposed to address the clutter problem. Among them, neural network techniques have been widely adopted because of numerous advantages. Also, recent studies have shown that clutter can be modeled as a nonlinear deterministic dynamical system, making it amenable to chaotic system methods. We have found that combining these two approaches allows us to effectively suppress clutter and preserve target features. We applied a dynamic learning neural network (DLNN) to reconstruct clutter dynamical models. A DLNN is a multilayer perceptron neural network with two modifications. First, each node in the input and hidden layers is fully connected to the output layer. Second, the activation function is removed from each output node, allowing the chaotic model to be expressed as a linear function of the output weight vector in terms of polynomial basis functions. Clutter signals can be reconstructed from time series measurements by applying the results of Takens to determine a suitable embedding dimension. As a rule, embedding size grows with model complexity, as do the number of required measurements and computational costs. Alternatively, in the approach we adopt, the clutter may be treated as a spatial chaotic system because of the nature of scattering and its associated nonlinear wave phenomena. This allows the clutter to be reconstructed in the spatial domain, generally with less effort. We therefore employed spatial information, rather than radar time series, in applying the DLNN. To further ease the computational burden, we used fractal dimension to quantify the chaotic behavior of the clutter’s geometric aspects. We determined it by differential box counting, the least complex of several methods used to estimate an image’s Figure 1. Images (b)–(d) are the results of applying three target detection methods on the synthetic aperture radar image shown in (a). A constant false alarm rate (CFAR) algorithm was used in (b), and a dynamic learning neural network (DLNN) method was used in (c). The combined use of a DNLL method fractal dimensioning is shown in (d)." @default.
- W2012912681 created "2016-06-24" @default.
- W2012912681 creator A5018780655 @default.
- W2012912681 date "2006-01-01" @default.
- W2012912681 modified "2023-09-25" @default.
- W2012912681 title "Radar target detection using fractal dimension" @default.
- W2012912681 cites W1549386224 @default.
- W2012912681 cites W2059529679 @default.
- W2012912681 cites W2116487523 @default.
- W2012912681 cites W2161522250 @default.
- W2012912681 cites W2167308215 @default.
- W2012912681 doi "https://doi.org/10.1117/2.1200610.0407" @default.
- W2012912681 hasPublicationYear "2006" @default.
- W2012912681 type Work @default.
- W2012912681 sameAs 2012912681 @default.
- W2012912681 citedByCount "0" @default.
- W2012912681 crossrefType "journal-article" @default.
- W2012912681 hasAuthorship W2012912681A5018780655 @default.
- W2012912681 hasConcept C127313418 @default.
- W2012912681 hasConcept C134306372 @default.
- W2012912681 hasConcept C202444582 @default.
- W2012912681 hasConcept C26546657 @default.
- W2012912681 hasConcept C33676613 @default.
- W2012912681 hasConcept C33923547 @default.
- W2012912681 hasConcept C40636538 @default.
- W2012912681 hasConcept C41008148 @default.
- W2012912681 hasConcept C554190296 @default.
- W2012912681 hasConcept C62649853 @default.
- W2012912681 hasConcept C76155785 @default.
- W2012912681 hasConceptScore W2012912681C127313418 @default.
- W2012912681 hasConceptScore W2012912681C134306372 @default.
- W2012912681 hasConceptScore W2012912681C202444582 @default.
- W2012912681 hasConceptScore W2012912681C26546657 @default.
- W2012912681 hasConceptScore W2012912681C33676613 @default.
- W2012912681 hasConceptScore W2012912681C33923547 @default.
- W2012912681 hasConceptScore W2012912681C40636538 @default.
- W2012912681 hasConceptScore W2012912681C41008148 @default.
- W2012912681 hasConceptScore W2012912681C554190296 @default.
- W2012912681 hasConceptScore W2012912681C62649853 @default.
- W2012912681 hasConceptScore W2012912681C76155785 @default.
- W2012912681 hasLocation W20129126811 @default.
- W2012912681 hasOpenAccess W2012912681 @default.
- W2012912681 hasPrimaryLocation W20129126811 @default.
- W2012912681 hasRelatedWork W1513436170 @default.
- W2012912681 hasRelatedWork W2000749800 @default.
- W2012912681 hasRelatedWork W2022698958 @default.
- W2012912681 hasRelatedWork W2053621563 @default.
- W2012912681 hasRelatedWork W2058359048 @default.
- W2012912681 hasRelatedWork W2150823093 @default.
- W2012912681 hasRelatedWork W2350089091 @default.
- W2012912681 hasRelatedWork W2384530884 @default.
- W2012912681 hasRelatedWork W2389397070 @default.
- W2012912681 hasRelatedWork W2825016321 @default.
- W2012912681 isParatext "false" @default.
- W2012912681 isRetracted "false" @default.
- W2012912681 magId "2012912681" @default.
- W2012912681 workType "article" @default.