Matches in SemOpenAlex for { <https://semopenalex.org/work/W2012930721> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W2012930721 endingPage "683" @default.
- W2012930721 startingPage "678" @default.
- W2012930721 abstract "No AccessJournal of UrologyINVESTIGATIVE UROLOGY1 Aug 2001REGULATION OF KERATINOCYTE GROWTH FACTOR RECEPTOR AND ANDROGEN RECEPTOR IN EPITHELIAL CELLS OF THE HUMAN PROSTATE BERNHARD PLANZ, QIFA WANG, SANDRA D. KIRLEY, MICHAEL MARBERGER, and W. SCOTT MCDOUGAL BERNHARD PLANZBERNHARD PLANZ More articles by this author , QIFA WANGQIFA WANG More articles by this author , SANDRA D. KIRLEYSANDRA D. KIRLEY More articles by this author , MICHAEL MARBERGERMICHAEL MARBERGER More articles by this author , and W. SCOTT MCDOUGALW. SCOTT MCDOUGAL More articles by this author View All Author Informationhttps://doi.org/10.1016/S0022-5347(05)66042-9AboutFull TextPDF ToolsAdd to favoritesDownload CitationsTrack CitationsPermissionsReprints ShareFacebookLinked InTwitterEmail Abstract Purpose: Stromal-epithelial interactions of growth factors and the androgen receptor may have implications for the pathophysiology of benign and neoplastic transformation of the human adult prostate. We investigated a possible interaction of keratinocyte growth factor with its receptor as well as with the androgen receptor signaling pathway in human prostatic epithelial cells. Materials and Methods: Human prostatic epithelial cells were obtained from explant primary culture, established in DU145 cell conditioned medium and maintained in keratinocyte serum-free medium with supplements. Epithelial cells were characterized by light and electron microscopy, and immunocytochemical study using epithelial and mesenchymal markers. Androgen receptor, keratinocyte growth factor receptor and keratinocyte growth factor messenger RNA expression was measured by polymerase chain reaction (PCR). The response to 0.01 to 10 nM. dihydrotestosterone, 10 μM. flutamide and 1 to 1,000 ng./ml. keratinocyte growth factor was tested by [3H] thymidine assay. The difference in keratinocyte growth factor receptor and androgen receptor gene expression after treatment with and without keratinocyte growth factor and flutamide were determined by quantitative multiplex PCR and quantitated using densitometry analysis. Results: Immunocytochemical and electron microscopy characterization revealed typical epithelial differentiation. PCR showed keratinocyte growth factor receptor and androgen receptor expression in epithelial cultured cells but no keratinocyte growth factor expression. Epithelial cells showed a significant time and dose dependent stimulation of cell proliferation with keratinocyte growth factor and dihydrotestosterone (p <0.05). When combined with the anti-androgen flutamide the effect of 100 ng./ml. keratinocyte growth factor was significantly decreased (p <0.05). At 100 ng./ml. keratinocyte growth factor quantitative multiplex PCR revealed stimulated keratinocyte growth factor receptor and androgen receptor messenger RNA expression. Conclusions: These results show that keratinocyte growth factor up-regulates the keratinocyte growth factor and androgen receptors in the absence of androgen. Thus, the androgen signaling pathway may be activated by growth factors such as keratinocyte growth factor in an androgen deficient environment. References 1 : Steroid hormone receptors: many actors in search of a plot. Cell1995; 83: 851. Google Scholar 2 : Characterization and expression of a cDNA encoding the human androgen receptor. Proc Natl Acad Sci USA1989; 86: 327. Google Scholar 3 : Immunolocalization of the keratinocyte growth factor in benign and neoplastic human prostate and its relation to androgen receptor. Prostate1999; 41: 233. Google Scholar 4 : Androgen receptor gene and hormonal therapy failure of prostate cancer. Am J Pathol1998; 152: 1. Google Scholar 5 : Androgen receptor activation in prostatic tumor cell lines by insulin-like growth factor-I, keratinocyte growth factor and epidermal growth factor. Cancer Res1994; 54: 5474. Google Scholar 6 : Purification and characterization of newly identified growth factor specific for epithelial cells. Proc Natl Acad Sci USA1989; 86: 802. Google Scholar 7 : Expression of fibroblast growth factors (FGFs) and FGF receptors in human prostate. J Urol1997; 157: 351. Link, Google Scholar 8 : Keratinocyte growth factor functions in epithelial induction during seminal vesicle development. Proc Natl Acad Sci USA1994; 91: 1074. Google Scholar 9 : KGF and EGF differentially regulate the phenotype of prostatic epithelial cells. Growth Reg1996; 6: 22. Google Scholar 10 : Androgen responsiveness of stromal cells of the human prostate: regulation of cell proliferation and keratinocyte growth factor by androgen. J Urol1998; 160: 1850. Link, Google Scholar 11 : Characterization of the receptor for keratinocyte growth factor. Evidence for multiple fibroblast growth factor receptors. J Biol Chem1990; 265: 12767. Google Scholar 12 : Identification of an activin-follistatin growth modulatory system in the human prostate: secretion and biological activity in primary cultures of prostatic epithelial cells. J Urol1999; 161: 1378. Link, Google Scholar 13 : Mutation of the androgen-receptor gene in metastatic androgen-independent prostate cancer. N Engl J Med1995; 332: 1393. Google Scholar 14 : Human KGF is FGF-related with properties of a paracrine effector of epithelial cell growth. Science1989; 245: 752. Google Scholar 15 : Detection of amplified oncogenes by differential polymerase chain reaction. Oncogene1989; 4: 1153. Google Scholar 16 : Multiplex PCR: critical parameters and step-by-step protocol. BioTechniques1997; 23: 504. Google Scholar 17 : DNA-sequencing with chain terminating inhibitors. Proc Natl Acad Sci USA1977; 74: 5463. Google Scholar 18 : Improved procedures for electron microscopic visualization of the cytoskeleton of cultured cells. J Struct Biol1995; 115: 290. Google Scholar 19 : Characterization of two cis-acting DNA elements involved in the androgen regulation of the probasin gene. Mol Endocrinol1993; 7: 23. Google Scholar 20 : Androgen-receptor mediated transcriptional regulation in the absence of direct interaction with a specific DNA-element. Mol Endocrinol1995; 9: 1017. Google Scholar 21 : Heparin-binding keratinocyte growth factor is a candidate stromal-to-epithelial cell andromedin. Mol Endocrinol1992; 6: 2123. Google Scholar 22 : Characterization of a stromal cell model of the human benign and malignant prostate from explant culture. J Urol1999; 161: 1329. Link, Google Scholar 23 : A functional model of adult human prostate epithelium. The role of androgens and stroma in architectual organisation and the maintenance of differentiated secretory function. J Cell Sci1992; 102: 361. Google Scholar 24 : Keratin immunoreactivity in the benign and neoplastic human prostate. Cancer Res1985; 45: 3663. Google Scholar 25 : Differentiation pathways and histogenetic aspects of normal and abnormal prostatic growth: a stem cell model. Prostate1996; 28: 98. Google Scholar 26 : A novel coculture model for benign prostatic hyperplasia expressing both isoforms of 5α reductase. J Clin Endocrinol Metab1998; 83: 206. Google Scholar 27 : Keratinocyte growth factor (KGF/FGF-7) has a paracrine role in canine prostate: molecular cloning of mRNA encoding canine KGF. DNA Cell Biol1996; 15: 247. Google Scholar 28 : FGF7 and FGF 2 are increased in benign prostatic hyperplasia and are associated with increased proliferation. J Urol1999; 162: 595. Abstract, Google Scholar 29 : Keratinocyte growth factor and receptor mRNA expression in benign and malignant human prostate. Exp Mol Pathol1995; 63: 52. Google Scholar 30 : Analysis of growth factor and receptor mRNA levels during development of rat seminal vesicle and prostate. Development1997; 124: 2431. Google Scholar 31 : Keratinocyte growth factor expression in hormone insensitive prostate cancer. Oncogene1997; 15: 1115. Google Scholar 32 : Keratinocyte growth factor (KGF) can replace testosterone in the ductal branching morphogenesis of the rat ventral prostate. Int J Develop Biol1996; 40: 941. Google Scholar From the Department of Urology, University of Vienna, Vienna, Austria, and Departments of Urology and Reproductive Endocrinology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts© 2001 by American Urological Association, Inc.FiguresReferencesRelatedDetails Volume 166Issue 2August 2001Page: 678-683 Advertisement Copyright & Permissions© 2001 by American Urological Association, Inc.Keywordsprostategrowth factor receptorsreceptorsandrogenepitheliumMetricsAuthor Information BERNHARD PLANZ More articles by this author QIFA WANG More articles by this author SANDRA D. KIRLEY More articles by this author MICHAEL MARBERGER More articles by this author W. SCOTT MCDOUGAL More articles by this author Expand All Advertisement PDF downloadLoading ..." @default.
- W2012930721 created "2016-06-24" @default.
- W2012930721 creator A5011369374 @default.
- W2012930721 creator A5048704428 @default.
- W2012930721 creator A5065341662 @default.
- W2012930721 creator A5079643976 @default.
- W2012930721 creator A5090946201 @default.
- W2012930721 date "2001-08-01" @default.
- W2012930721 modified "2023-10-13" @default.
- W2012930721 title "REGULATION OF KERATINOCYTE GROWTH FACTOR RECEPTOR AND ANDROGEN RECEPTOR IN EPITHELIAL CELLS OF THE HUMAN PROSTATE" @default.
- W2012930721 cites W1514636046 @default.
- W2012930721 cites W1891297103 @default.
- W2012930721 cites W1896753574 @default.
- W2012930721 cites W1967932707 @default.
- W2012930721 cites W1969997861 @default.
- W2012930721 cites W1976319508 @default.
- W2012930721 cites W1987183940 @default.
- W2012930721 cites W1992980812 @default.
- W2012930721 cites W1999837736 @default.
- W2012930721 cites W1999864225 @default.
- W2012930721 cites W2042202567 @default.
- W2012930721 cites W2057773291 @default.
- W2012930721 cites W2059140386 @default.
- W2012930721 cites W2068684349 @default.
- W2012930721 cites W2068879625 @default.
- W2012930721 cites W2072708570 @default.
- W2012930721 cites W2073292917 @default.
- W2012930721 cites W2081558968 @default.
- W2012930721 cites W2093325301 @default.
- W2012930721 cites W2096298665 @default.
- W2012930721 cites W2138270253 @default.
- W2012930721 cites W2340799873 @default.
- W2012930721 cites W4230672462 @default.
- W2012930721 cites W4241245702 @default.
- W2012930721 cites W4241678623 @default.
- W2012930721 cites W4244736043 @default.
- W2012930721 doi "https://doi.org/10.1016/s0022-5347(05)66042-9" @default.
- W2012930721 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/11458116" @default.
- W2012930721 hasPublicationYear "2001" @default.
- W2012930721 type Work @default.
- W2012930721 sameAs 2012930721 @default.
- W2012930721 citedByCount "29" @default.
- W2012930721 countsByYear W20129307212012 @default.
- W2012930721 countsByYear W20129307212020 @default.
- W2012930721 countsByYear W20129307212022 @default.
- W2012930721 crossrefType "journal-article" @default.
- W2012930721 hasAuthorship W2012930721A5011369374 @default.
- W2012930721 hasAuthorship W2012930721A5048704428 @default.
- W2012930721 hasAuthorship W2012930721A5065341662 @default.
- W2012930721 hasAuthorship W2012930721A5079643976 @default.
- W2012930721 hasAuthorship W2012930721A5090946201 @default.
- W2012930721 hasConcept C121608353 @default.
- W2012930721 hasConcept C126322002 @default.
- W2012930721 hasConcept C134018914 @default.
- W2012930721 hasConcept C170493617 @default.
- W2012930721 hasConcept C2775960820 @default.
- W2012930721 hasConcept C2776235491 @default.
- W2012930721 hasConcept C2778615670 @default.
- W2012930721 hasConcept C2780192828 @default.
- W2012930721 hasConcept C502942594 @default.
- W2012930721 hasConcept C61367390 @default.
- W2012930721 hasConcept C71924100 @default.
- W2012930721 hasConcept C86803240 @default.
- W2012930721 hasConcept C95444343 @default.
- W2012930721 hasConceptScore W2012930721C121608353 @default.
- W2012930721 hasConceptScore W2012930721C126322002 @default.
- W2012930721 hasConceptScore W2012930721C134018914 @default.
- W2012930721 hasConceptScore W2012930721C170493617 @default.
- W2012930721 hasConceptScore W2012930721C2775960820 @default.
- W2012930721 hasConceptScore W2012930721C2776235491 @default.
- W2012930721 hasConceptScore W2012930721C2778615670 @default.
- W2012930721 hasConceptScore W2012930721C2780192828 @default.
- W2012930721 hasConceptScore W2012930721C502942594 @default.
- W2012930721 hasConceptScore W2012930721C61367390 @default.
- W2012930721 hasConceptScore W2012930721C71924100 @default.
- W2012930721 hasConceptScore W2012930721C86803240 @default.
- W2012930721 hasConceptScore W2012930721C95444343 @default.
- W2012930721 hasIssue "2" @default.
- W2012930721 hasLocation W20129307211 @default.
- W2012930721 hasLocation W20129307212 @default.
- W2012930721 hasOpenAccess W2012930721 @default.
- W2012930721 hasPrimaryLocation W20129307211 @default.
- W2012930721 hasRelatedWork W1998044896 @default.
- W2012930721 hasRelatedWork W2013066280 @default.
- W2012930721 hasRelatedWork W2022782478 @default.
- W2012930721 hasRelatedWork W2079023278 @default.
- W2012930721 hasRelatedWork W2079805620 @default.
- W2012930721 hasRelatedWork W2099179397 @default.
- W2012930721 hasRelatedWork W2110512846 @default.
- W2012930721 hasRelatedWork W2130389739 @default.
- W2012930721 hasRelatedWork W2348536875 @default.
- W2012930721 hasRelatedWork W318183733 @default.
- W2012930721 hasVolume "166" @default.
- W2012930721 isParatext "false" @default.
- W2012930721 isRetracted "false" @default.
- W2012930721 magId "2012930721" @default.
- W2012930721 workType "article" @default.