Matches in SemOpenAlex for { <https://semopenalex.org/work/W2012933016> ?p ?o ?g. }
- W2012933016 endingPage "334" @default.
- W2012933016 startingPage "321" @default.
- W2012933016 abstract "Environmental degradation, including shallowing, deterioration of aquatic habitat and water pollution, has arisen from the inflow of fine sediment to Lake Takkobu in northern Japan. The lake has experienced gradual environmental degradation due to agricultural development, which has introduced both fine sediment and sediment-associated nutrients into the lake. We have reconstructed the history of sediment yield to Lake Takkobu in Kushiro Mire over the last 300 years and have examined trends with reference to land-use development. Fifteen lake sediment core samples were obtained, and various physical variables of lake sediments were analyzed and dated using 137Cs and tephrochronology. The physical variables showed that all points contained mainly silt, except for two points close to the river mouths, where the mean diameter was < 35 μm. The peaks were defined as a “signal” when the physical variables were synchronous in a profile. These were created by floods and engineering works constructing drainage systems. The signal of canal construction in 1898 was detected in all core points. Lake Takkobu core samples contained two tephra layers. From the refractive indices of dehydrated glasses, the lower tephra layer was identified as Ko-c2 (1694) and the upper tephra layer as Ta-a (1739). A clear peak in the 137Cs concentration was detected at all the sampling points, except for the site close to the Takkobu River. This site showed two peaks in the 137Cs concentration, which was attributed to perturbation from flood events and a drainage project. The maximum 137Cs concentration was identified as the sediment surface from 1963, enveloped by the 1962 and 1964 signals. The sediment yield averaged over the last 300 years for Lake Takkobu was reconstructed for four periods using the signal, tephra and 137Cs as marker layers. The sediment yield under the natural erosion condition for the first two periods was 226 tons/year from 1694 to 1739 and 196 tons/year from 1739 to 1898. The development of the Takkobu watershed started in 1880s with partial deforestation and channelization in 1898, 1959, and 1962 leading to an increased sedimentation yield of 1016 tons/year from 1898 to 1963. Continued deforestation, channelization works in 1964, road construction in 1980–1990s, as well as agriculture development caused a further increase to 1354 tons/year from 1963 to 2004. Compared to the averaged natural sedimentation yield of 206 tons/year until 1898, initial land-use development in a catchment accelerated lake sedimentation, indicated by the 5-fold sediment yield. With increasing agricultural development since 1960s, sedimentation yields were highest for 1963–2004; a 7-fold increase compared with pre-impact conditions. To reduce sediment yield, riparian buffers along the rivers should be preserved or rebuilt, and sluices may function effectively during short-term periods of flooding. Environmental management policy and laws restricting uncontrolled and inappropriate land-use might help in addition to ensure longer-term environmental health by reducing the sedimentation rate." @default.
- W2012933016 created "2016-06-24" @default.
- W2012933016 creator A5017062920 @default.
- W2012933016 creator A5055894662 @default.
- W2012933016 creator A5060641896 @default.
- W2012933016 creator A5066233651 @default.
- W2012933016 date "2006-08-01" @default.
- W2012933016 modified "2023-10-01" @default.
- W2012933016 title "Historical change in lake sedimentation in Lake Takkobu, Kushiro Mire, northern Japan over the last 300 years" @default.
- W2012933016 cites W1964158943 @default.
- W2012933016 cites W1970185373 @default.
- W2012933016 cites W1972971337 @default.
- W2012933016 cites W1974694623 @default.
- W2012933016 cites W1975923625 @default.
- W2012933016 cites W1979841721 @default.
- W2012933016 cites W1981746756 @default.
- W2012933016 cites W1983494330 @default.
- W2012933016 cites W1991011039 @default.
- W2012933016 cites W1992300323 @default.
- W2012933016 cites W1995811954 @default.
- W2012933016 cites W1996385525 @default.
- W2012933016 cites W1997964837 @default.
- W2012933016 cites W2002147893 @default.
- W2012933016 cites W2010855073 @default.
- W2012933016 cites W2011009487 @default.
- W2012933016 cites W2016469934 @default.
- W2012933016 cites W2016647293 @default.
- W2012933016 cites W2016676374 @default.
- W2012933016 cites W2017109632 @default.
- W2012933016 cites W2017419544 @default.
- W2012933016 cites W2018750287 @default.
- W2012933016 cites W2023715170 @default.
- W2012933016 cites W2023833696 @default.
- W2012933016 cites W2028384472 @default.
- W2012933016 cites W2031736225 @default.
- W2012933016 cites W2032206971 @default.
- W2012933016 cites W2034890074 @default.
- W2012933016 cites W2035432890 @default.
- W2012933016 cites W2038808410 @default.
- W2012933016 cites W2045287553 @default.
- W2012933016 cites W2047989894 @default.
- W2012933016 cites W2048859734 @default.
- W2012933016 cites W2052682832 @default.
- W2012933016 cites W2055342883 @default.
- W2012933016 cites W2058642210 @default.
- W2012933016 cites W2058871724 @default.
- W2012933016 cites W2059604951 @default.
- W2012933016 cites W2066576092 @default.
- W2012933016 cites W2072154811 @default.
- W2012933016 cites W2079714470 @default.
- W2012933016 cites W2085524953 @default.
- W2012933016 cites W2096103597 @default.
- W2012933016 cites W2127015504 @default.
- W2012933016 cites W2130511071 @default.
- W2012933016 cites W2131093110 @default.
- W2012933016 cites W2133566388 @default.
- W2012933016 cites W2165756529 @default.
- W2012933016 cites W2167657542 @default.
- W2012933016 cites W2316504962 @default.
- W2012933016 cites W2316747427 @default.
- W2012933016 doi "https://doi.org/10.1016/j.geomorph.2006.01.036" @default.
- W2012933016 hasPublicationYear "2006" @default.
- W2012933016 type Work @default.
- W2012933016 sameAs 2012933016 @default.
- W2012933016 citedByCount "28" @default.
- W2012933016 countsByYear W20129330162012 @default.
- W2012933016 countsByYear W20129330162013 @default.
- W2012933016 countsByYear W20129330162014 @default.
- W2012933016 countsByYear W20129330162015 @default.
- W2012933016 countsByYear W20129330162016 @default.
- W2012933016 countsByYear W20129330162017 @default.
- W2012933016 countsByYear W20129330162019 @default.
- W2012933016 countsByYear W20129330162021 @default.
- W2012933016 countsByYear W20129330162022 @default.
- W2012933016 countsByYear W20129330162023 @default.
- W2012933016 crossrefType "journal-article" @default.
- W2012933016 hasAuthorship W2012933016A5017062920 @default.
- W2012933016 hasAuthorship W2012933016A5055894662 @default.
- W2012933016 hasAuthorship W2012933016A5060641896 @default.
- W2012933016 hasAuthorship W2012933016A5066233651 @default.
- W2012933016 hasConcept C100970517 @default.
- W2012933016 hasConcept C114793014 @default.
- W2012933016 hasConcept C120806208 @default.
- W2012933016 hasConcept C123157820 @default.
- W2012933016 hasConcept C127313418 @default.
- W2012933016 hasConcept C153018869 @default.
- W2012933016 hasConcept C161222754 @default.
- W2012933016 hasConcept C166957645 @default.
- W2012933016 hasConcept C168329928 @default.
- W2012933016 hasConcept C17409809 @default.
- W2012933016 hasConcept C187320778 @default.
- W2012933016 hasConcept C205649164 @default.
- W2012933016 hasConcept C2777634280 @default.
- W2012933016 hasConcept C2777981168 @default.
- W2012933016 hasConcept C2816523 @default.
- W2012933016 hasConcept C53657456 @default.
- W2012933016 hasConcept C76886044 @default.
- W2012933016 hasConcept C87457978 @default.