Matches in SemOpenAlex for { <https://semopenalex.org/work/W2012969172> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W2012969172 abstract "Cybercrime continues to be a growing challenge and malware is one of the most serious security threats on the Internet today which have been in existence from the very early days. Cyber criminals continue to develop and advance their malicious attacks. Unfortunately, existing techniques for detecting malware and analysing code samples are insufficient and have significant limitations. For example, most of malware detection studies focused only on detection and neglected the variants of the code. Investigating malware variants allows antivirus products and governments to more easily detect these new attacks, attribution, predict such or similar attacks in the future, and further analysis. The focus of this paper is performing similarity measures between different malware binaries for the same variant utilizing data mining concepts in conjunction with hashing algorithms. In this paper, we investigate and evaluate using the Trend Locality Sensitive Hashing (TLSH) algorithm to group binaries that belong to the same variant together, utilizing the k-NN algorithm. Two Zeus variants were tested, TSPY_ZBOT and MAL_ZBOT to address the effectiveness of the proposed approach. We compare TLSH to related hashing methods (SSDEEP, SDHASH and NILSIMSA) that are currently used for this purpose. Experimental evaluation demonstrates that our method can effectively detect variants of malware and resilient to common obfuscations used by cyber criminals. Our results show that TLSH and SDHASH provide the highest accuracy results in scoring an F-measure of 0.989 and 0.999 respectively." @default.
- W2012969172 created "2016-06-24" @default.
- W2012969172 creator A5002608426 @default.
- W2012969172 creator A5015963607 @default.
- W2012969172 creator A5037234971 @default.
- W2012969172 creator A5065265823 @default.
- W2012969172 date "2014-11-01" @default.
- W2012969172 modified "2023-09-27" @default.
- W2012969172 title "Mining Malware to Detect Variants" @default.
- W2012969172 cites W1482228399 @default.
- W2012969172 cites W1549130775 @default.
- W2012969172 cites W1578351389 @default.
- W2012969172 cites W1968527224 @default.
- W2012969172 cites W1987851356 @default.
- W2012969172 cites W2017683526 @default.
- W2012969172 cites W2021963610 @default.
- W2012969172 cites W2043301771 @default.
- W2012969172 cites W2059562799 @default.
- W2012969172 cites W2074415236 @default.
- W2012969172 cites W2083331665 @default.
- W2012969172 cites W2099053789 @default.
- W2012969172 cites W2114765320 @default.
- W2012969172 cites W2128167566 @default.
- W2012969172 cites W2140807364 @default.
- W2012969172 cites W2144112223 @default.
- W2012969172 cites W2159302528 @default.
- W2012969172 cites W2168154523 @default.
- W2012969172 cites W2225930908 @default.
- W2012969172 cites W30585751 @default.
- W2012969172 cites W4233121901 @default.
- W2012969172 doi "https://doi.org/10.1109/ctc.2014.11" @default.
- W2012969172 hasPublicationYear "2014" @default.
- W2012969172 type Work @default.
- W2012969172 sameAs 2012969172 @default.
- W2012969172 citedByCount "30" @default.
- W2012969172 countsByYear W20129691722016 @default.
- W2012969172 countsByYear W20129691722018 @default.
- W2012969172 countsByYear W20129691722019 @default.
- W2012969172 countsByYear W20129691722020 @default.
- W2012969172 countsByYear W20129691722021 @default.
- W2012969172 countsByYear W20129691722022 @default.
- W2012969172 crossrefType "proceedings-article" @default.
- W2012969172 hasAuthorship W2012969172A5002608426 @default.
- W2012969172 hasAuthorship W2012969172A5015963607 @default.
- W2012969172 hasAuthorship W2012969172A5037234971 @default.
- W2012969172 hasAuthorship W2012969172A5065265823 @default.
- W2012969172 hasBestOaLocation W20129691722 @default.
- W2012969172 hasConcept C110875604 @default.
- W2012969172 hasConcept C119857082 @default.
- W2012969172 hasConcept C124101348 @default.
- W2012969172 hasConcept C136764020 @default.
- W2012969172 hasConcept C154945302 @default.
- W2012969172 hasConcept C22735295 @default.
- W2012969172 hasConcept C38652104 @default.
- W2012969172 hasConcept C41008148 @default.
- W2012969172 hasConcept C541664917 @default.
- W2012969172 hasConcept C67388219 @default.
- W2012969172 hasConcept C74270461 @default.
- W2012969172 hasConcept C99138194 @default.
- W2012969172 hasConceptScore W2012969172C110875604 @default.
- W2012969172 hasConceptScore W2012969172C119857082 @default.
- W2012969172 hasConceptScore W2012969172C124101348 @default.
- W2012969172 hasConceptScore W2012969172C136764020 @default.
- W2012969172 hasConceptScore W2012969172C154945302 @default.
- W2012969172 hasConceptScore W2012969172C22735295 @default.
- W2012969172 hasConceptScore W2012969172C38652104 @default.
- W2012969172 hasConceptScore W2012969172C41008148 @default.
- W2012969172 hasConceptScore W2012969172C541664917 @default.
- W2012969172 hasConceptScore W2012969172C67388219 @default.
- W2012969172 hasConceptScore W2012969172C74270461 @default.
- W2012969172 hasConceptScore W2012969172C99138194 @default.
- W2012969172 hasLocation W20129691721 @default.
- W2012969172 hasLocation W20129691722 @default.
- W2012969172 hasOpenAccess W2012969172 @default.
- W2012969172 hasPrimaryLocation W20129691721 @default.
- W2012969172 hasRelatedWork W2093401155 @default.
- W2012969172 hasRelatedWork W2203413815 @default.
- W2012969172 hasRelatedWork W2399380072 @default.
- W2012969172 hasRelatedWork W2771198651 @default.
- W2012969172 hasRelatedWork W2902215642 @default.
- W2012969172 hasRelatedWork W2929621094 @default.
- W2012969172 hasRelatedWork W3036889819 @default.
- W2012969172 hasRelatedWork W3211806875 @default.
- W2012969172 hasRelatedWork W4248917921 @default.
- W2012969172 hasRelatedWork W4285407572 @default.
- W2012969172 isParatext "false" @default.
- W2012969172 isRetracted "false" @default.
- W2012969172 magId "2012969172" @default.
- W2012969172 workType "article" @default.